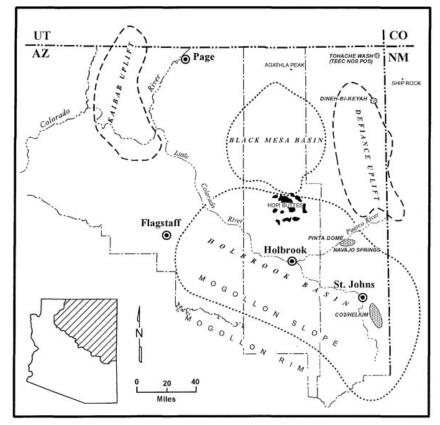
Holbrook Basin Helium Project

Blackstone Energy Corporation & Arizona Energy Partners March 2017

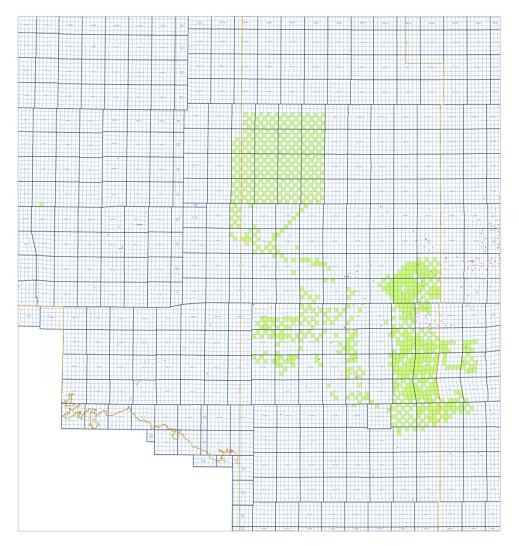
the spilled


Outline

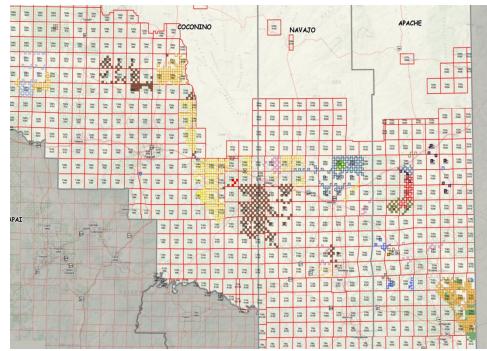
- Holbrook Basin Geology-Arizona
- AEP Lease Holdings
- BECI Lease Holdings
- Helium Production
- Formation Descriptions
- Stratigraphic Section
- Primary Targets
- Later Targets
- Supporting Regional Geology
- Oil Reserve Potential
- General Geology
- Uranium/Thorium Survey Map with Cross-sections
- Isostatic & Bouguer Anomaly Maps
- Cross Sections
- Webb Resources Seismic Line

- Spectral Analysis Maps
- AFE
- Proposed Workover of BECI Wells (RCR & State of Arizona)
- Origin of Helium
- Helium Uses
- Helium Accumulations
- Helium Infrastructure
- Helium Processing
- US Helium Production
- Global Helium Demand & Pricing
- HNZ Holdings 17-1 Re-entry
- Monte Carlo Models AEP & BECI

Geology-Arizona


- Northeastern Arizona is part of the Colorado Plateau Physiographic province. The Colorado Plateau is characterized by flat-lying, relatively undisturbed, largely marine sedimentary rocks of Paleozoic and Mesozoic age that are covered by Tertiary to recent volcanic flows near Flagstaff and Springerville. Permian strata truncate Cambrian, Devonian, Mississippian, Pennsylvanian and Proterozoic rocks along the margins of the Defiance Uplift. Maximum submergence of the Defiance uplift may have occurred during the Mississippian, but the Mississippian rocks were subsequently eroded back, probably by renewed, slow emergence of the uplift in Pennsylvanian through Permian Time.
- As much as 2,000 feet of Permian strata were eventually deposited on the Proterozoic Basement rocks of the Defiance uplift. All past production of helium and current oil, gas and CO2 are from rock formations of Paleozoic age in the Plateau Province. The major tectonic features in Northeastern Arizona include the Defiance and Kaibab uplifts in the northern part of the area. The Black Mesa Basin is situated between the Kaibab and Defiance Uplifts. The Holbrook Basin is located between the Defiance Uplift to the north and the Mogollon Slope to the south. A prominent escarpment known as the Mogollon Rim defines much of the southern edge of the Plateau Province.

AEP Lease Holdings


280,000+ Acres in Navajo & Apache Counties, AZ

- AEP's current leasehold covers not less than 282,923 gross and net acres with more acreage acquisition to come
- Total lease burdens, including, but not limited to, royalty, overriding royalty and any other lease burdens on each lease does not exceed 20%, and the average net revenue of the leases is approximately 81%
- The leases each have a Primary Term of not less than six (6) years; and said primary terms began no sooner than October, 2015
- Leases cover all rights and depths

BECI Lease Holdings

- BECI's current leasehold covers not less than 352,000 gross and net acres with more acreage acquisition/divestures to come
- Total lease burdens, including, but not limited to, royalty, overriding royalty and any other lease burdens on each lease does not exceed 20%, and the average net revenue of the leases is approximately 80%
- The leases each have a Primary Term of not less than six (6) years; and said primary terms began no sooner than May, 2012.
- Leases cover all rights and depths

Please note that this map for visual reference, not accurate acreage count, for this please refer to BECI lease holdings

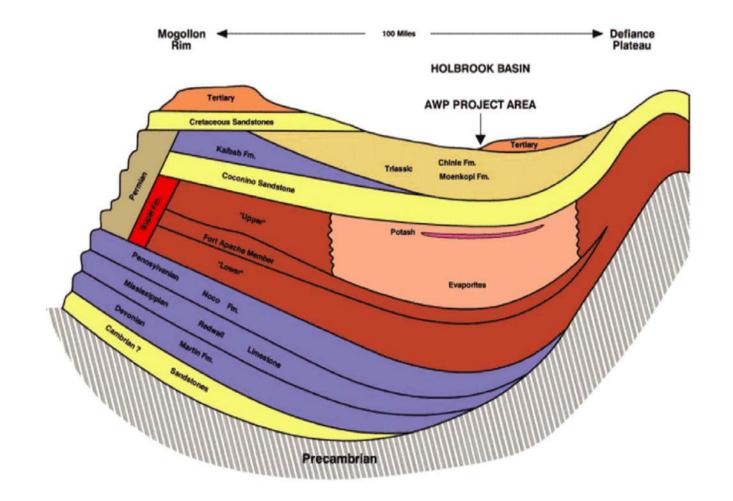
Helium Production

- The Pinta Dome, Navajo Springs, and East Navajo Springs fields are relatively small anticlinal structures located in the Holbrook Basin in Townships 19 and 20 North, Ranges 26, 27, and 28 East. Wells in the Pinta Dome and Navajo Springs fields produced helium from the Permian Coconino Sandstone. Several wells in the East Navajo Springs field produced helium from the Shinarump Conglomerate at the base of Triassic Chinle Formation.
- Masters (1960) and Dean (1960) published the history of the exploration and development of the helium resources in the Navajo-Chambers area. The Navajo-Chambers represented the only area in the history of the helium industry that had experienced sustained exploration and development for helium gas alone.

Helium Production

- In 1951, Kipling Petroleum Company discovered Helium on Pinta Dome in 1950 when it drilled the # 1 Macie in search of oil. No oil was found but a large flow of gas was encountered in the Coconino Sandstone. The gas did not burn so it was allowed to flow unrestricted from the well bore for about 8 weeks (Dean et al, 1960). Reports indicated that the gas escaping from the open well "roared like a jet engine" at an estimated initial rate of 24 million cubic feet per day (Heindl, 1952). The operator shut the well in after testing by the U.S. Bureau of Mines showed that the gas was rich in Helium (Masters, 1960).
- In 1951, Kipling Petroleum Company drilled the #2 Macie, which was abandoned because of stuck pipe. In 1955, the Apache Oil and Helium Corporation took over development of the field, and reworked the # 2 Macie, which blew out and drilled the #3 Macie, which it was abandoned before target depth (Coconino SS).
- In 1956, Kerr-McGee Oil Industries completed both the #2 & #3 Macie wells, and drilled 3 more gas wells. In 1959, Eastern Petroleum Corporation drilled three more gas wells and extended the area of helium production to the southeast.

Helium Production


 Kerr-McGee constructed a helium-extraction plant at Navajo and started processing helium from the Pinta Dome field in 1961, Navajo Springs field in 1964, and East Navajo Springs field in 1969. Kerr-McGee's helium plant was the first privately financed helium plant in the world producing Grade-A helium (Smith et al, 1962).Nearly 9 billion cubic feet of gas containing more than 700 million cubic feet of Grade-A helium were produced from the Pinta Dome and the adjacent Navajo Springs and East Navajo Springs fields. Gas produced from the Coconino Sandstone averaged 90% Nitrogen, 8-10% Helium, and 1% carbon dioxide.

Formation Descriptions

Age	Formation Name	Thickness and Description
Triassic	Moenkopi	0-420' of shale, some sandstone
Permian	Kaibab Limestone	0-75' of limestone, some dolomite and sandstone
		350-400' of light-colored sandstone, to tan and red in lower part,
Permian	Coconino Sandstone	w/ quartz overgrowths on grains
		200-750' of dark mudstone and siltstone at base, overlain by 600-
		900' of red siltstone and sandstone with some interbedded
		carbonates and evaporites, overlain by 0-80' of the Fort Apache
		Member (limestone and/or dolomite, porous, some shale and
		evaporites); overlain by 450-1300' of evaporites (halite &
Permian	Supai Group	gypsum), some carbonates and redsiliciclastics.
		790-1100', more carbonate to the south, more shale to the north.
		Consists of alternativing gray limestones, reddish-brown calcitic
		shale some dolomitic limestone, generally non-porous, equivilent
Pennsylvanian	Naco	to Molas formation in Utah, Colorado, New Mexico
Pennsylvanian	Hermosa	0-250' of interbedded shale and lesser limestone
Pennsylvanian	Molas	karst breccia and red shale
Mississippian	Redwall	0-100' of fossilferous limestone, some dolomite
		0-130' of porous dolomite, some interbedded limestone,
Devonian	Martin	sandstone and shale
Cambrian	Tapeats/McCracken Formation	0-90' of sandstone
PreCambrian	Basement	granite and local metamorphics

Simplified Stratigraphic Section

Holbrook Basin

Primary Targets

The Permian Coconino sandstone and the Supai group are the primary targets as they are very porous and permeable in the Holbrook Basin. The residual oil shows in the Coconino on the Concho Dome lend evidence to oil entrapment within the Coconino on the Manuel Seep that is structurally 500 feet higher. The Boundary Butte Field on the Utah-Arizona border has produced in excess of four million barrels of oil from 458 surface acres from a depth of 1,500 feet. Since the surface of the Manuel Seep covers 12,766 acres, the recoverable reserve potential is much greater. In addition to oil and gas reserves, the Supai group is host to vast helium reserves.

The Permian Coconino that produced helium at the Pinta Dome, Navajo Springs and East Navajo Springs on the north side of the Holbrook Basin and oil on the Arizona-Utah border and wells on either side of the Manuel Seep. The Permian Fort Apache contained oil, gas and helium in the PetroSun 17-1, gas and helium on the PetroSun 15-1 and the Holbrook Energy 26-1 displaced several barrels of oil on the pit at its Meteor Crater prospect. The Granite Wash contained shows of C1 and C2 in Ridgeway Petroleum's 1994 CO2 and helium discovery on the St. Johns anticline to the southeast of the Manuel Seep Prospect.

Later Targets

The Devonian formations are considered to be later targets for the following reasons:

(1) The prospective pay zones are present in the Pan American Petroleum NMALCO B-1 well on the East Taylor Anticline, the adjacent surface structure to the southwest, and the absence of the zones in the Pan American NMALCO A-1 well on the top of the Concho Dome, the adjacent surface structure to the northeast;

(2) PetroSun's NMAL 15-1 well on the flank of the Concho Dome encountered 48 feet of basal Devonian shale, indicating the whole Devonian section should be present on the Manuel Seep;

(3) Gravity and aeromagnetic data indicate rapid thinning of the sedimentary section northeast of the Manuel Seep, which is very likely the pinch-out of the Devonian; and

Later Targets

(4) the McCracken sandstone and the Martin dolomite have excellent reservoir qualities. Dolomite samples from the Devonian oil seep on the East Verde River were analyzed for porosity (17%) and permeability (34md). A cross section using the Amstrat logs from the PanAm wells is attached as Figure 2. A map showing the locations of these wells and the three structures is included as Figure 3. A map of the Bouguer gravity data showing the gradient that indicates the pinch-out of the Devonian is included as Figure 4. Pictures of the Devonian oil seep are included as Figure 5. Source rock analysis of the field. Devonian Martin has indicated that it was buried to sufficient depth to generate oil and natural gas, that it has total organic content (TOC) of 2.8% and that it is at the peak of the oil generation window, capable of generating 246 barrels of oil per acre foot. Oil and natural gas are likely to be encountered on the above because it is likely trapped along the up-dip pinch-out of the Devonian source rocks and reservoir beds.

Supporting Regional Geology

A geothermal well drilled in 1993, the Alpine Federal #1, encountered oil and vugular porosity in the Supai carbonates. The PetroSun NZ 15-1 has shows of oil and discovered natural gas on the Concho Dome with oolitic and oolmoldic porosity in excess of 30% in the dolomites that contain oil and gas, indicating that reefs are present in the Permian Supai series. The 1959 Pan American on either side of the Manuel Seep also encountered oolitic Supai dolomites containing shows of oil. An Amstrat log cross section from Pan Am 1-A on Concho Dome to Pan Am 1-B on the East Taylor Anticline is included as Figure 5B to show the 40 to 55 foot thickness of the Fort Apache member of the Permian Supai, ,the oolites described in the samples and the live oil shows in the dolomites.

Supporting Regional Geology Continued

Based on a high precision gravity and multilevel aeromagnetic survey in the Concho area, there is an area of high density between Mesa Redonda and the Concho Anticline, which has been interpreted as carbonate sequences. That area coincides with the surface anticline across the Manuel Seep, so the structure overlies and may reflect a reef buildup in the Permian Supai. Figure 6 is a map showing the two profiles that were flown across on the Manuel Seep. Since the Manuel Seep is along the edge of the Upper Supai Salt Basin, reefs, beaches and sandbars may all contain oil, natural gas and helium. Oil was encountered in the Permian Supai dolomites in the potash wells between Concho Dome and Manuel Seep. Those mineral tests with multiple oil and gas shows have been added to the map of the Holbrook Basin (Figure 1). On the other side of the Manuel Seep, the East Taylor Anticline had oil shows in the Permian Supai. An oil and gas test south of St. Johns flowed water at the rate of 700 gallons per minute (24,000 barrels per day) from a sand in the Permian Supai. Therefore, the Permian Supai has the potential for prolific production rates from the sands, as well as the vugular dolomites.

Oil Reserve Potential

The reserve potential of the Manuel Seep is of an enormous magnitude. Based on Devonian oil production in the Lisbon and Walker Creek Fields (AZ), Devonian oil reserves could be 295,000 barrels per well. The Manuel Seep contains 172 locations on 80 acre spacing (oil) that provides a Devonian oil potential of approximately 50,000,000 barrels. The spacing for gas wells in Arizona is 640 acres that provides for 22 gas wells or a total Devonian natural gas potential of 2.1 trillion cubic feet of natural gas. Penn reserves of at least 1 billion cubic feet of natural gas per 160 acre spacing were calculated by Sumatra Energy from logs run in their well on the Concho structure that extrapolate potential natural gas reserves of 4 BCF per 640 acres. The Permian Supai oil reserves based on volumetric calculations using the porosities encountered by Ridgeway Petroleum and PetroSun allow for 553,900 barrels of oil per 40 acres and/or 1.9 BCF of natural gas per 640 acres. The Permian Coconino potential oil reserves based on the Boundary Butte Field equate to 330,000 barrels of oil per 40 acre spacing.

General Geology

- Permian Strata truncate Devonian, Mississippian, Pennsylvanian and Proterozoic basement rocks along the southwest margin of the Defiance-Zuni Uplift in the Eastern Holbrook Basin. Maximum submergence of the Uplift may have occurred during the Mississippian (Stoyanow, 1936). The Mississippian rocks were subsequently eroded back to an edge line west of Devonian rocks, most likely due to slow emergence of the uplift in Pennsylvanian through Permian time. As much as 2,000 feet of Permian Strata was deposited on the Proterozoic basement rocks of the Defiance-Zuni Uplift.
- Devonian, Mississippian, and Pennsylvanian strata are the most extensive and prospective of the pre-Permian units in the eastern Holbrook Basin. The Manuel seep one of the highest points on the Holbrook Basin. The Devonian, Mississippian and Pennsylvanian stratas truncate and stack on one another as you move up structure to the apex of the Holbrook Basin.

Devonian

 Devonian Strata overlay the Proterozoic and Cambrian rocks over most of the eastern Holbrook Basin. North of the Holbrook Basin (HB), Devonian sands (McCracken) are productive where they were deposited around pre-Devonian topographic relief along the northwest margin of the Defiance-Zuni Uplift. Approximately 100,000 barrels of oil have been produced from these basal Devonian sands in northeastern Arizona at the Walker Creek Field (Rauzi, 1996). South of the Holbrook Basin, basal Devonian sands (Beckers Butte, BB) were deposited on a surface of as much as 300 feet of local relief along the Mongollon Rim and in Salt River Canyon (Huddle and Dobrovolny, 1952). The isopach pattern of Devonian Rocks indicates that similar pre-Devonian relief is present at depth in the eastern Holbrook Basin. Local depressions and embayments with similar basal sand deposits are probable along the entire length of the southwest margin of the Defiance-Zuni Uplift in the eastern Holbrook Basin.

Devonian

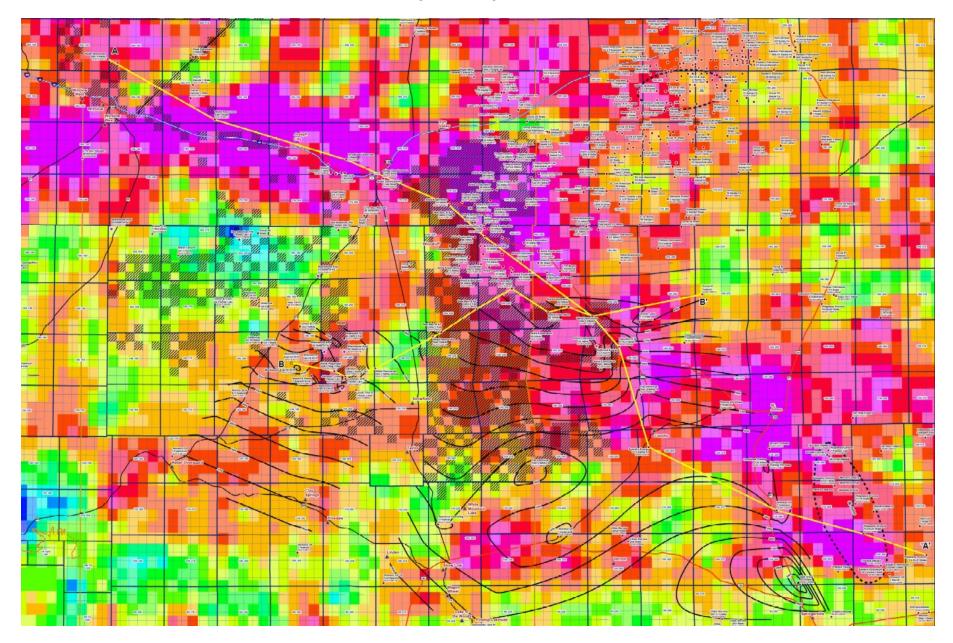
 Drifting plankton and algae, abundant flora of psilophytes (primitive land plants) and layers of lime mud rich in organic matter probably filled the local depressions and embayments (Teichert, 1965). As a result, these areas may contain source rocks and significant potential for stratigraphic and subtle structural traps in the pre-Permian strata in the subsurface of the eastern Holbrook Basin. Basal Devonian sands, 10 to 20 feet thick, usually occur below a thick sequence of dark brown, petroliferous limestone in outcrops along the Mogollon Rim (Huddle and Dobrovolny, 1945). In like manner, basal sands deposited in local depressions and embayments along the southwest margin of the Defiance-Zuni Uplift may contain trapped hydrocarbons generated from organic-rich source rock. Such hydrocarbon source rock at depth in the eastern Holbrook Basin may have geochemical analyses similar to or better than Devonian mudstones that crop out in Salt River Canyon. The Devonian mudstones in Salt River Canyon have a total organic carbon content of 2.81 percent and are within the oil generating window (Desborough & et al.).

Mississippian

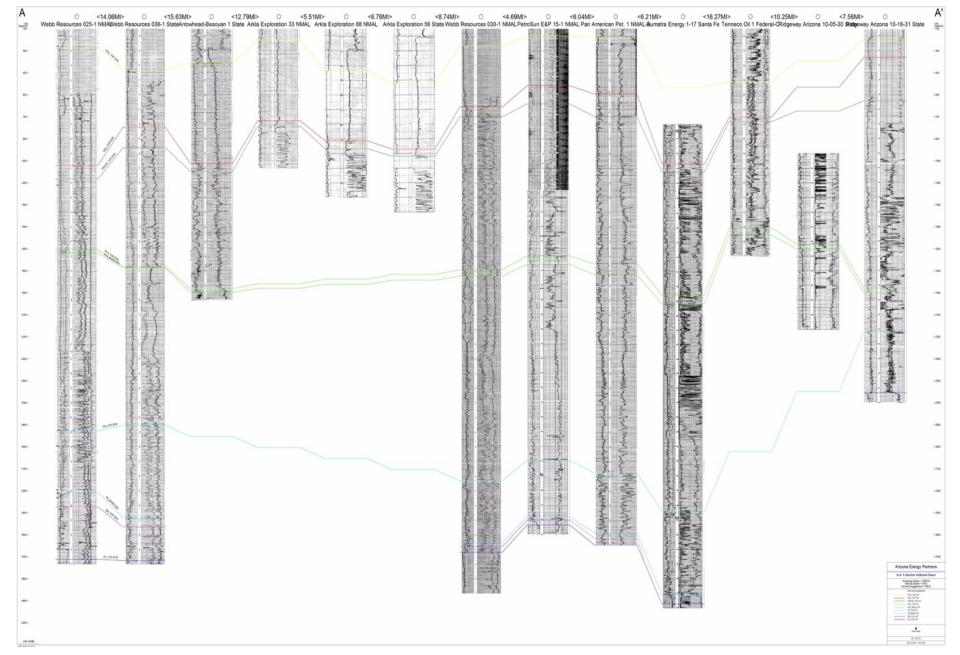
 The Mississippian Redwall Limestone maintains a fairly consistent thickness of about 100 feet across most of the Holbrook Basin and wedges out between Devonian and Pennsylvanian rocks along the southwest margin of the Defiance-Zuni Uplift Zone (DZUZ). Mississippian rocks are not present in a broad area northwest of Heber, probably because of late or post Mississippian uplift and erosion (Havenor and Pye, 1958). More than 800,000 barrels of oil and 385 million cubic feet of helium-bearing gas have been produced from Mississippian carbonate units in northeastern Arizona (Rauzi, 1996). As a result, the hydrocarbon and helium potential of Mississippian rocks in eastern Holbrook Basin should not be dismissed, especially along the southwest margin of the Defiance-Zuni Uplift. Mississippian rocks may contain hydrocarbons or helium-bearing gas, especially where truncated between underlying Devonian hydrocarbon source rocks and overlying impermeable Pennsylvanian shales.

Pennsylvanian

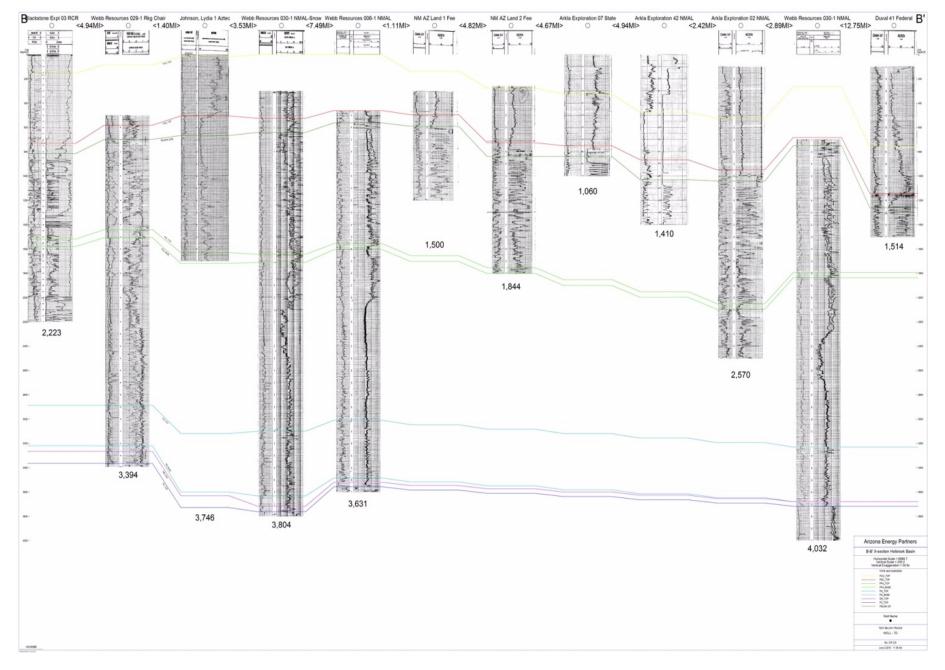
- The fossiliferous Pennsylvanian strata at depth in the eastern Holbrook Basin, therefore, may very well have generated and trapped hydrocarbons, especially along the southwest margin of the Defiance-Zuni Uplift, where Tertiary volcanic/intrusive activity may have enhanced the hydrocarbon generation and potential of Pennsylvanian strata, much as it has enhanced the generation and production of hydrocarbons in northeastern Arizona. Most of the shoreline clastic rocks of Pennsylvanian age in the eastern Holbrook Basin are shales, calcareous siltstones, and silty limestones, indicating that the southwest margin of the Defiance-Zuni uplift remained relatively low relief, at or slightly above sea-level through Pennsylvanian time.
- The Pennsylvanian Naco Formation grades from unfossiliferous red beds in the western part of Holbrook basin into fossilferous carbonate beds in the eastern and southeastern part of the basin, where they are lithological similar to the "Bough" zone of probable upper Pennsylvanian age in southeastern New Mexico (Kottlowski et al, 1962). The bough zone produces oil in three fields and appears to have similar relationships to the Matador arch as the Naco has to the Defiance-Zuni uplift (analog).

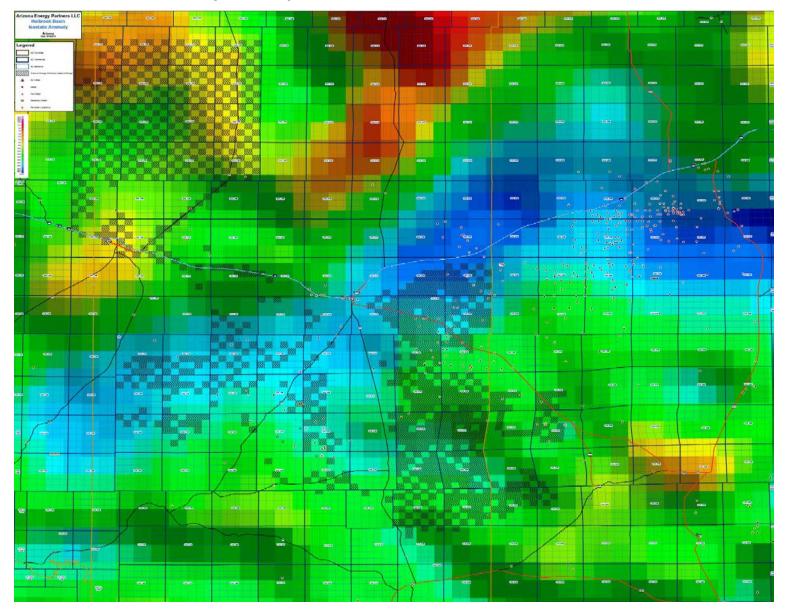

Pennsylvanian

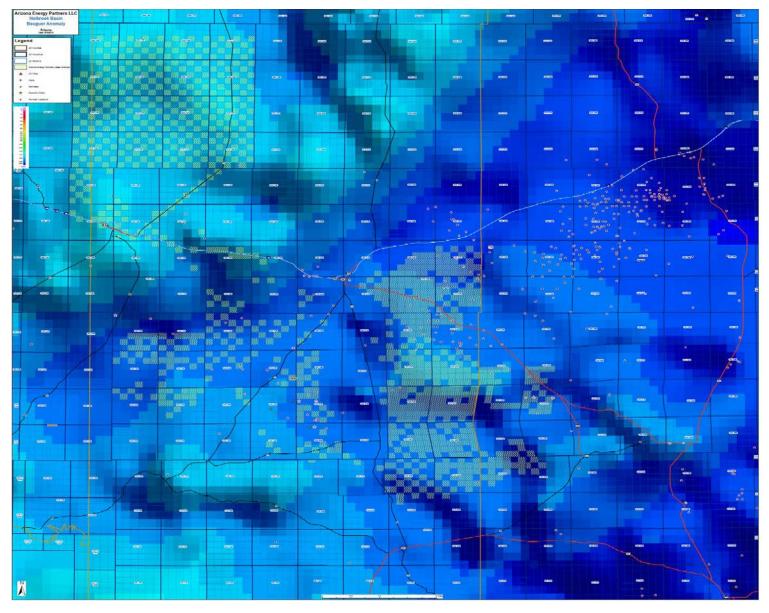
 Massive to nodular fossiliferous limestones of Pennsylvanian age crop out in the southeastern most part of the Holbrook Basin on the North side of Escudilla Mountain in 28-7n-31e. These outcrops indicate that a fairly thick sequence of Pennsylvanian marine strata was deposited in this portion of the Holbrook Basin and is present at depth beneath the White Mountain volcanic field. A well drilled into the Permian Supai in 1993 on the south side of Escudilla Mountain shows extensive volcanic rocks forming in the White Mountains are not extensive at depth and have not been detrimental to the oil and gas potential for this region. This volcanism, in fact, may have locally enhanced the potential for oil and gas generation and accumulation as it has in northeastern Arizona. Bleeding oil from Permian Carbonate units in the hole drilled south of Escudilla Mountain attests to the presence of hydrocarbons at depth beneath volcanic rocks in the White Mountain Area (Rauzi, 1994).

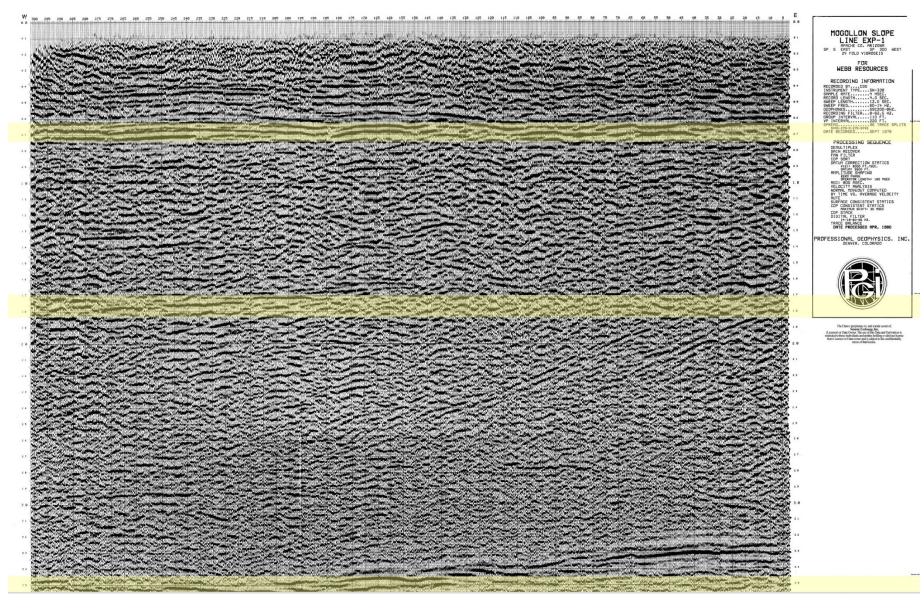

Pennsylvanian

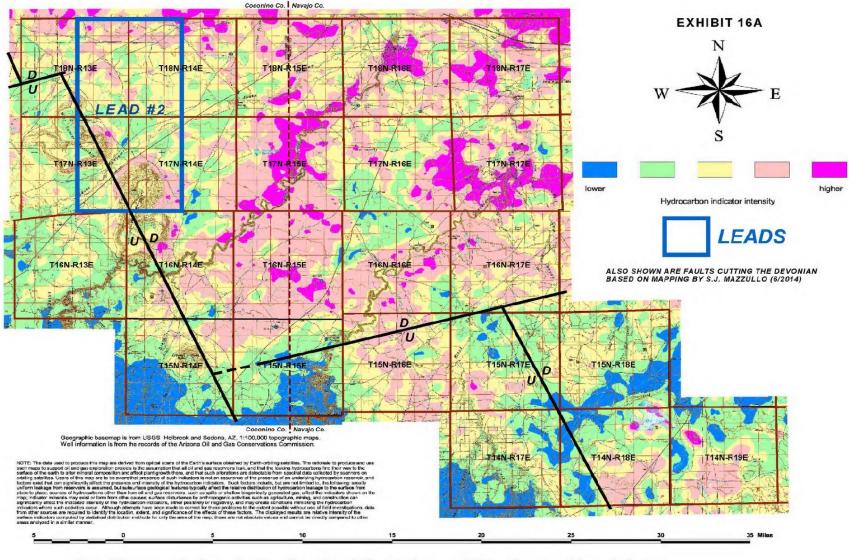
 The large, organic rich reefs and associated lagoonal deposits, suggested at depth by the fossilferous Pennsylvanian rocks that outcrop on the north side of Escudilla Mountain, have significant potential for generation, accumulation and production of oil and gas along this part of the southwest margin of the Defiance-Zuni Uplift. Clearly the White Mountain region of the Holbrook Basin should not be overlooked, it has favorable paleogeography and potential for hydrocarbon production.


Uranium/Thorium Survey Map with Cross-Sections

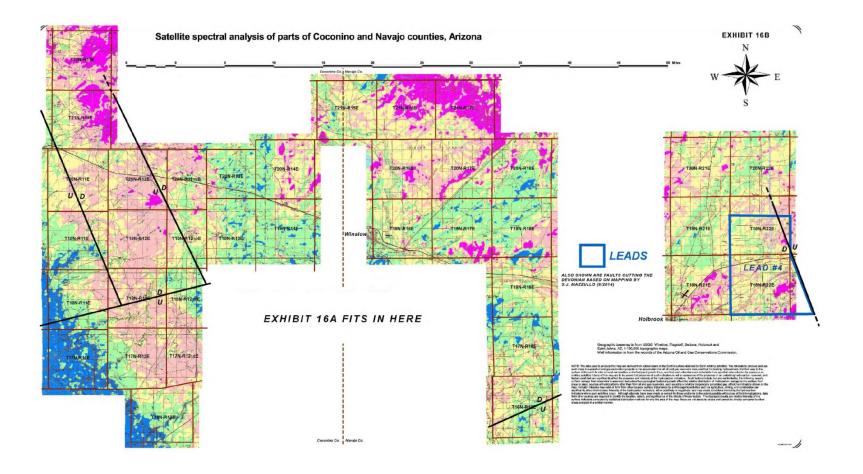

A – A' Holbrook Basin


B – B' Holbrook Basin


Isostatic Anomaly Map


Bouguer Anomaly Map

Webb Resources Seismic Line (1979)

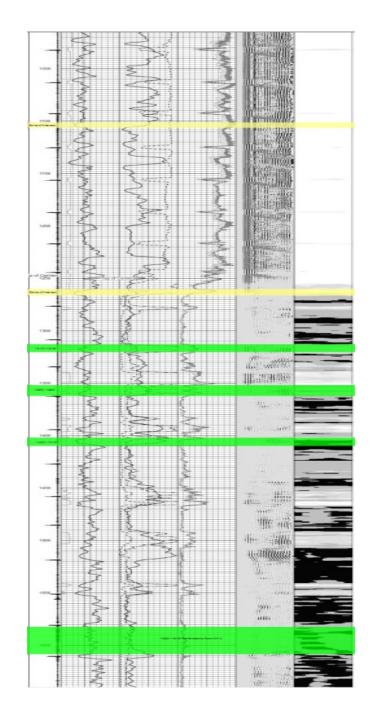


Holbrook Basin Hydrocarbon Spectral Analysis

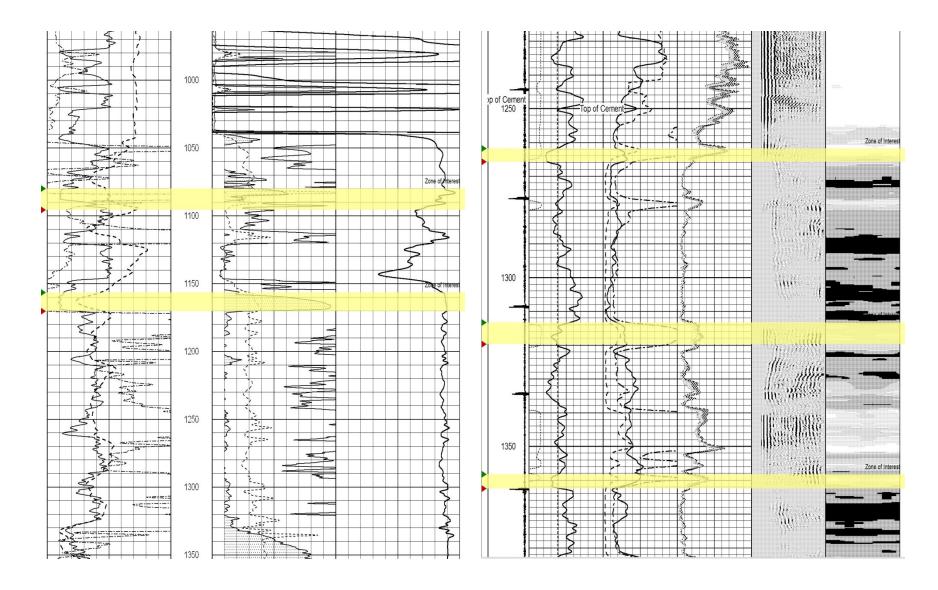
Satellite spectral analysis of parts of Coconino and Navajo counties, Arizona

Holbrook Basin Hydrocarbon Spectral Analysis

AFE for 2500'

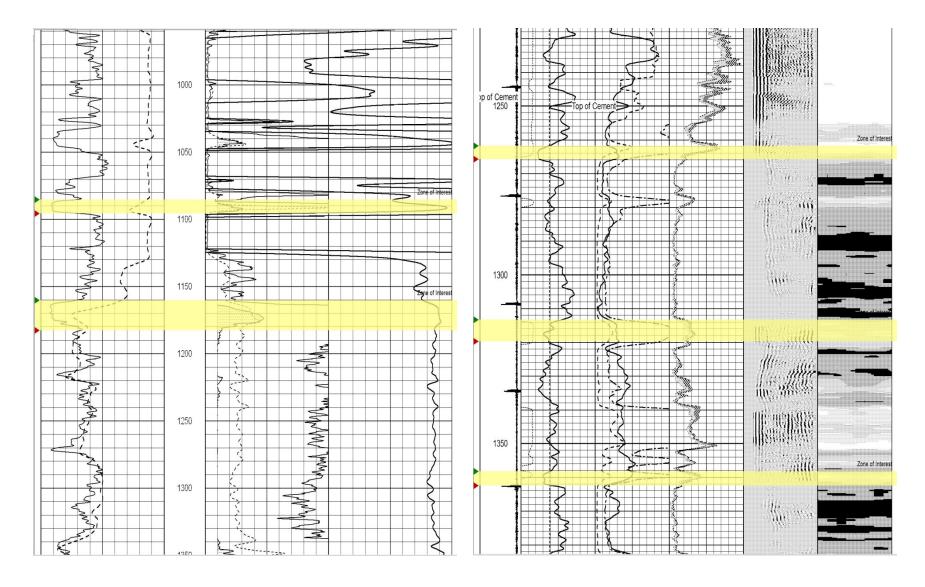

	A	FE fc	or 4500)'
			Date:	

Bate AZ Poperator PetroSin Inc /AZ Enc Prepared By Cordon LeBlanc, Jr. T.D. 2.500 feet Sploration Yes Development N/A Secults Oil Gardon LeBlanc, Jr. T.D. 2.500 feet Sploration Yes Development N/A Premain State Dry Hole Completed Actual Cost (U Sploration Yes Development N/A Premain State Dry Hole Completed Actual Cost Prepared BY Soundown							Da	te:		7-Dec-15	
Az Project Name Manuel Seep # 1 Operator Petrosan Petros	AFE No.					mber:	Ari	zona State Li	and Department	(ASLD)	
Permane Formation Permane formation T.D. 2500 feet Exploration Yes Development N/A Results OI Gardon LeBlanc, Ir. T.D. 2500 feet Drilling Intangibles: Dovelopment N/A OV Actual 0 Down Processional Services (Legal, Engineering, Geological, Survey) \$ 5000.00	Area:								County:	Apache	
Drepared By Gardon LeBlanc, Jr. T.D. 2.500 feet Exploration Yes Development N/A Dry Actual Completed Actual Completed Actual Cost (L) Drilling Intangibles: Dry Hole Dry Hole Completed Actual Cost (L) Day Work 9 Days WDP (I) \$10,500.00 Dry S 19,200.00 Dry				Manuel Seep	#1				Operator:	PetroSun Inc /	AZ Energy
Exploration Yes Development N/A Results Oil Gas Dry Drilling Intangibles: Without Pipe Completed Actual (U Cotation: Roads, Pits Damages FT. \$ 5000.00 Dry									7.0	0.500.6	
Results Oil Gas Dry Orifing Intangibles:	Prepared By:	Gordon Le	eblanc, Jr.						1.D.	2,500 feet	
Results Oil Gas Dry Orifing Intangibles:											
Drilling intangibles: Dry Hole Well Completed Well Actual Cost Completed Well Actual Cost Cost Cost <thcost< th=""> Cost Cost<!--</td--><td>Exploration</td><td>Yes</td><td>1</td><td>Development</td><td></td><td>N/A</td><td></td><td></td><td></td><td></td><td></td></thcost<>	Exploration	Yes	1	Development		N/A					
Drilling intangibles: Dry Hole Without Pipe Completed Weil Actual Cost Completed (U Location: Reads, Pits Damages (in Move Day Work 9 Day WDP (a) Structure \$ 10,0000	Results	Oil		Gas			Dn	,			
Drilling Intangibles: Wiell Cost (U Location: Roads, Fits Damages Rig Move Fit. \$ 5,000.00							-		0.111		-
Big Moxe FT \$ 30,000 00 Days WODP @ Dis 500.00 Day Days WODP @ Days WODP @ Days Cement and Cennenting S 16,200.00 S 16,200.00 Days Professional Services (Legal, Engineering, Geological, Survey) S 16,200.00 Days S 16,200.00 Micelaneous Services (Inc. Marine, Rigging, Welding, ETC) S 16,500.00 S 16,500.00 Days Miscelaneous Services (Inc. Marine, Rigging, Welding, ETC) S 5,500.00 S 5,200.00 Days Miscelaneous Services (Inc. Marine, Rigging, Welding, ETC) S 5,200.00 Days Days Administative, General Expense Days S 28,200.00 Days Days Frad Drilling S 28,000.00 S 28,200.00 Days Days Days Completion Intangibles Optimiting S 28,000.00 Days	Drilling Intan	gibles:					N				Over (Under)
Big Moxe FT \$ 30,000 00 Days WODP @ Dis 500.00 Day Days WODP @ Days WODP @ Days Cement and Cennenting S 16,200.00 S 16,200.00 Days Professional Services (Legal, Engineering, Geological, Survey) S 16,200.00 Days S 16,200.00 Micelaneous Services (Inc. Marine, Rigging, Welding, ETC) S 16,500.00 S 16,500.00 Days Miscelaneous Services (Inc. Marine, Rigging, Welding, ETC) S 5,500.00 S 5,200.00 Days Miscelaneous Services (Inc. Marine, Rigging, Welding, ETC) S 5,200.00 Days Days Administative, General Expense Days S 28,200.00 Days Days Frad Drilling S 28,000.00 S 28,200.00 Days Days Days Completion Intangibles Optimiting S 28,000.00 Days	Location: Roa	ds. Pits Da	mages				\$	5.000.00			
Days WODP @ Day S 18,250.00 S Testing and Coring Logging 15,000.00 15,000.00 1 1 Professional Services (Legal, Engineering, Geological, Survey) \$ 18,250.00 1 1 Materials, Freedwards and Rentals \$ 18,000.00 1 1 1 Miscelaneous Services (Inc. Marine, Rogang, Welding, ETC) \$ 5,000.00 1	Rig Move		FL @				\$	30,000.00			
Cement and Cementing Logging Professional Services (Legal, Engineering, Geological, Survey) \$ 18,250.00 \$ 19,800.00 \$ 19,800.00 \$ 18,950.00 \$ 18,950.00 \$ 16,700.00 \$ 16,700.00 \$ 16,700.00 \$ 16,700.00 \$ 16,700.00 \$ 10 \$ 16,700.00 25,000.00 Completion Intangibles Completion Intangibles Total Origing Frect and/or Action - Dirk Work, ETC. Completion Tools and Equipment - Rentals Bitory Construction - Dirk Work, ETC. Completion Tools and Equipment - Rentals Bitory Construction - Dirk Work, ETC. Contingency ID % Total Completion Total Completion	Day Work	9	Days WDP @	\$10,500.00	/Day		\$	94,500.00			
Testing and Coring Loging \$ \$ 15,000.00		Days	WODP @		/Day	1					
Logging \$ 19,800.00	Cement and C	Cementing					\$	18,250.00			
Professional Services (Legal, Engineering, Geological, Survey) Mu Materials, Fuel, Water Bits, Correheads and Rentals Bits, Correheads and Rentals Bits, Correheads and Rentals Bits, Correheads and Rentals Miscelaneous Services (Inc. Marine, Rigging, Weiding, ETC) Miscelaneous Services (Inc. Marine, Bits, Sono 00 Completion Intangibles Completion Intangibles Completion Intangibles Completion Intangibles Completion Intangibles Completion Intangibles Completion Intangibles Completion Intangibles Completion Intangibles Completion Intangibles Control of the Services (Legal, Engineering, Geological, Consulting) Miscelaneous Services (Legal, Engineering, Services) Miscelaneous Services (L	Testing and C	oring					\$	15,600.00			
Professional Services (Legal, Engineering, Geological, Survey) Mu Materials, Fuel, Water Bits, Correheads and Rentals Bits, Correheads and Rentals Bits, Correheads and Rentals Bits, Correheads and Rentals Miscelaneous Services (Inc. Marine, Rigging, Weiding, ETC) Miscelaneous Services (Inc. Marine, Bits, Sono 00 Completion Intangibles Completion Intangibles Completion Intangibles Completion Intangibles Completion Intangibles Completion Intangibles Completion Intangibles Completion Intangibles Completion Intangibles Completion Intangibles Control of the Services (Legal, Engineering, Geological, Consulting) Miscelaneous Services (Legal, Engineering, Services) Miscelaneous Services (L	Logging						\$	19,800.00			
Mud Materials, Fuel, Water \$ § §	Professional S			Geological, S	urvey)			27,000.00			
Bits, Concentratis \$ 167,000.0 Miscellaneous Services (nc. Marine, Rigging, Welding, ETC) \$ 5,000.00 Miscellaneous (nc. Labor & Transportation & Blowout Insurance) \$ 26,730.00 Completion Intangibles Dry Hole Completion Intangibles Dry Hole Completion Intangibles Dry Hole Completion Intangibles Dry Hole Completion Intangibles S 220.00.00 Completion Intangibles S 220.00.00 Completion Intangibles S 220.00.00 Completion Intangibles S 3000.00 Fac and/or Acid Treatment \$ 6,000.00 Fac and/or Acid Treatment \$ 6,000.00 Fac and/or Acid Treatment \$ 6,000.00 Foreksional Services (Legal, Engineering, Geological, Consulting) \$ 4,500.00 Miscelaneous Services (Legal, Engineering, Geological, Consulting) \$ 4,500.00 Other (Inciding Labor & Transportation \$ 114,620.00 Consignery 10 % Total Completion \$ 114,620.00 Total Intangibles S 114,620.00 Casing (U Casing 705 Total Completion \$ 114,620.00	Mud Materials	, Fuel, Wat	er					18,950.00			
Miscellaneous Services (inc. Labor & Transportation & Blowout Insurance) \$ 500000 Actual Completion Intangibles Total Drilling \$ 25,730.00 Actual Completion Intangibles Completion Intangibles Estep Construction - Dirt Work, ETC. S 6.000.00 Completion Intangibles Estep Construction - Dirt Work, ETC. S 6.000.00 Estep Construction - Dirt Work, ETC. S 6.000.00 Completion Intangibles Estep Construction - Dirt Work, ETC. Completion Intangibles Estep Construction - Dirt Work, ETC. Completion Intangibles Estep Construction - Dirt Work, ETC. Es	Bits, Corehea	ds and Ren	tals								
Miscelaneous (Inc. Labor & Transportation & Blowout Insurance) \$ 6.00.00 Image: Contingency insurance insur				ng, Welding, E	TC)						
Contingency 10 % Administrative, General Expense Total Drilling \$ 283,030.00 Completion Intangibles Ory Hole Completion Unit 4 Completion Unit 4 Days/Hrs. 5,500.00 \$ 283,030.00 Cernert and Cementing S 26,000.00 Perforating and Logging \$ 13,200.00 Frac and/or Acid Treatment S 6,000.00 Perforating and Logging \$ 6,000.00 Frac and/or Acid Treatment S 0,000.00 Perforating and Logging \$ 6,000.00 Frac ancior Acid Treatment S 0,000.00 Perforating and Logging \$ 6,000.00 Professional Services (Inc. Manne, Weding, Back Fill ETC) \$ 8,000.00 Perforating and Completion \$ 114,620.00 Contingency 10 % \$ 5120.00 Perforation and Completion \$ 114,620.00 Total Intangibles Dry Hole Completed Actual Cost (U Casing 705 FT.7 @ \$ 512.00 FT. \$ 2,500.00 Perforation Perforation Perforation Perforation	Miscellaneous	(Inc. Labor									
Administrative General Expense Down Hole Completion Completion Intangibles 00y Hole Completion Mint 4 Days/Hrs. 5,500.00 \$ 283,030.00 Completion Completion Intangibles 00y Hole Without Pipe Well Actual Cost (U Completion Intangibles 5,500.00 \$ 22,000.00 S 22,000.00 S	Contingency	10			,			25,730.00			
Total Drilling \$ 283,030.00 Completion Intangibles Opy Hole Without Pipe Completed Well Actual Cost (U Completion Unit 4 Days'Hrs. 5,500.00 \$ 22,000.00 Perforating and Logging Perforating and Logging Perforating and Logging \$ 13,200.00 Perforating and Logging P	Administrative	, General E	xpense								
Completion Intangibles Without Pipe Weil Cost (L Completion Intangibles 4 DaysHrs 5,500.00 \$ 22,000.00 -<							\$	283,030.00			
Completion Unit 4 Days/Hrs. 5,500.00 \$ 22,000.00 Cemered and Cementing Perforating and Logging Frac and/ar Acid Treatment \$ 13,200.00	с. 				70 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -						Over
Cement and Cementing \$ 20,000,00 Perforating and Logging \$ 12,000,00 Frac and/or Acid Treatment \$ 6,000,00 Prevel, Water, Power \$ 3,000,00 Battery Construction - Dit Work, ETC. \$ 6,000,00 Completion Tools and Equipment - Rentals \$ 13,000,00 Professional Services (Legal, Engineering, Geological, Consulting) \$ 8,000,00 Mitscellaneous Services (Legal, Engineering, Geological, Consulting) \$ 4,500,00 Other (Including Labor & Transportation \$ 114,820,00 Contingency 10 % Total Intangibles Dry Hole Casing 705 FT.7 2,500 FT.4 1/2 @ \$12,00, IFT. Casing 705 FT.4 1/2 Q 0, FT. \$ 2,500, 00 Tubing 2,500 FT 4 1/2 Q 0, FT. \$ 2,500, 00 Tubing 2,500 FT 4 1/2 Q (FT. \$ 2,500, 00 Substraces S 5,500, 00 Substraces S 5,500, 00 Substraces S 5,500, 00								/ithout Pipe	Well	Cost	(Under)
Performing and Logging Frac and/or Add Treatment Frac and/or Add Treatment S 13,000 00 S 13,000 00 Mitoclaneous Services (In Campion, Welding, Back Fill ETC) S 2,500 00 Total Intangibles Total Intangibles Dry Hole Completion Tangibles Dry Hole Completion Cost Tatal Equipment (Fences, Culvert, Tools, ETC) Completion Cost Tatal Well and Lease Cost Dry Hole Without Pipe Well Completion Cost Tatal Well and Lease Cost Dry Hole Dry			4	Days/Hrs.	5,500.00			22,000.00			
Frac and/or Acid Treatment \$ 6 000 00	Cement and C	Cementing						26,000.00			
Fuel, Water, Power \$ 3000 00											
Battery Construction - Dirt Work, ETC. \$ 6.000.00	Frac and/or A	cid Treatme	ent				\$	6,000.00			
Completion Tools and Equipment -Rentals Professional Services (Legal, Engineering, Geological Consulting) Miscellaneous Services (Legal, Engineering, Geological Consulting) Miscellaneous Services (Legal, Engineering, Geological Consulting) Miscellaneous Services (Legal, Engineering, Geological Consulting) Contingency \$ 13,000.00	Fuel, Water, P	ower					\$				
Completion Tools and Equipment - Rentals Professional Services (Legal, Engineering, Geological, Consulting) Miscellaneous Services (Legal, Engineering, Geological, Consulting) Miscellaneous Services (Legal, Engineering, Geological, Consulting) Miscellaneous Services (Legal, Engineering, Geological, Consulting) Contingency \$ 13,000,00	Battery Const	ruction - Dir	t Work, ETC.				\$	6,000.00			
Professional Services (Legal, Engineering, Geological, Consuling) Miscellaneous Services (in: Marine, Welding, Back Fill ETC) Other (Including Labor & Transportation Contingency 10 % Total Intangibles Drilling and Completion Tangibles Drilling and Complet	Completion To	ools and Ec	uipment - Rentals				\$				
Miscellaneous Services (inc. Marine, Welding, Back Fill ETC) \$ 2,500,00 Other (Including Labor & Transportation Contingency 10 % 4,500,000 10 Total Intangibles Total Intangibles 5 10,420,00 10 10 Drilling and Completion Total Intangibles Dry Hole Without Pipe Completed Well Actual Cost 4 Casing @ /FT. 8 840,000 10 10 2,500 FT.41/2 @ \$5,00 FT 5 2,500,00 10 10 Tubing 2,500 FT.41/2 @ \$5,00 FT 5 2,500,00 10	Professional S	Services (Le	egal, Engineering	Geological, C	onsulting)			8.000.00			
Other (Including Labor & Transportation Contingency S 4.500.00 S Total Completion Total Intangibles S 10.420.00 S 114.620.00 Drilling and Completion Total Intangibles Dry Hole Without Pipe Completed Well Actual Cost Completed (U Drilling and Completion Total Intangibles @ /FT Bry Hole Well Completed Cost Actual Cost (U Casing 2.500 FT.7 @ \$12.00 /FT \$2.250.00 Wellwad Equipment 4.122.38" 7" X 4.12" \$2.500.00 <											
Contingency 10 % S 10.420.00 S Total Intangibles S 114,620.00 S 114,620.00 S Drilling and Completion Total Intangibles Dry Hole Without Pipe Completed Well Actual Cost Cost Current Cost 2500 FT. 705 8.460.00 S S 10.420.00 S S 10.420.00 S Cost Current Cost Cost Curent Cost Cost Current Cost				ing, butter in t							
Total Completion Total Intangibles \$ 114,620.00 Drilling and Completion Tangibles Dry Hole Without Pipe Completed Well Actual Cost (U Casing 705 FT. 7" @ \$12.00 /FT. \$ 212.00 //FT. Completed Well Actual Cost (U Uning 2.500 FT. 41/2 @ \$12.00 //FT. \$ 21.20.00 ////////////////////////////////////			0/					10,420,00		-	
Total Intangibles Dry Hole Completed Actual Completed Drilling and Completion Tangibles (I) Dry Hole Without Pipe Actual (I) Casing 705 FT. 7 (I) Statual (I) 2.500 FT. 41/2 (I) Statual (I) (I) 2.500 FT. 41/2 (I) Statual (I) (I) 2.500 FT. 41/2 (I) Statual (I) (I) Wellbaad Equipment 4 12*32 38* 7* x 4 1/2* S 2,500 00 (I) (I) Rods (I) FT. S 2,500 00 (I) (I) (I) (I) Subsufaces Equipment - Seating Nipple & Packer (I) S 5,500 00 (I)	Contingency	10	Total Completi	00				114 620 00		-	
Drilling and Completion Tangibles Without Pipe Well Cost (U. Casing 0 (PT. \$ 0,460.00 (U. (PT. \$ 2,500.00 (U. (PT. \$ 2,500.00 (U. (PT. \$ 2,250.00 (U. (U. (U. (U. (U. (U. (PT. \$ 2,250.00 (U.							Ť	114,020.00			
Drilling and Completion Tangibles Without Pipe Well Cost (U. Casing 0 (PT. \$ 0,460.00 (U. (PT. \$ 2,500.00 (U. (PT. \$ 2,500.00 (U. (PT. \$ 2,250.00 (U. (U. (U. (U. (U. (U. (PT. \$ 2,250.00 (U.	2						-	De Halo	Completed	Actual	Over
705 FT.7" @ \$12.00 /FT. \$\$8,460.00 2,500 FT.412 @ //FT. \$21,250.00 // // Tubing 2,500 FT.412 @ // /	Drilling and (Completion	n Tangibles				N				(Under)
2,500 FT. 4 1/2 @ FT. \$ 21,250.00 Tubing 2,500 FT 2 3/8 JFE @ FT. \$ 9,375.00 Weilhead Equipment 4 1/2*2 3/8" 7" × 4 1/2" \$ 2,500.00 FT. Rods @ /FT. \$ 2,500.00 FT. Rods @ /FT. \$ 2,500.00 FT. Rods @ /FT. \$ 2,500.00 FT. Stoburdaces Equipment. Centralizes, Scatchers @ /FT. \$ 2,500.00 FT. Stoburdaces Equipment. Centralizes, Scatchers @ //FT. \$ 5,500.00 FT. \$ 5,500.00 FT. Cher Miscellancous Equipment (Fences, Culvert, Tools, ETC) \$ 1,500.00 FT. \$ 5,208.00 \$ 57,293.00 FT. \$ 57,293.00	Casing			(Q)							
2,500 FT 4 1/2 @ \$ 21,500.0 FT Tubing 2,500 FT 2 38 JFE @ //FT \$ 9,375.00 Wellhead Equipment 4 12">2 3/8" //* X 4 1/2" \$ 2,500.00 FT Pooling Equipment 4 12">2 3/8" /* X 4 1/2" \$ 2,500.00 FT Rods @ //* X 4 1/2" \$ 2,500.00 FT Rods @ //* X 4 1/2" \$ 2,500.00 FT Stoburdices Equipment. Certralizes, Scatchers @ //* T \$ 2,500.00 FT Stoburdices Equipment. Seating Nipple & Packer \$ 5,500.00 FT \$ 5,500.00 FT Case Processing Unit. Dehydration Other Miscellanceus Equipment (Fences, Culvert, Tools, ETC) \$ 1,500.00 Other Miscellanceus Equipment Cost \$ 5,7293.00 FT Contingency 10<%			FT. 7*				\$				
Tubing 2:500 FT 2 3/8 JFE @ %FT. \$ 9.375 00 Wellbaad Equipment 4 1/2*2 3/8* 7* X 4 1/2* \$ 2,500 00 RT. \$ \$ 2,500 00 RT. \$ 2,500 00 RT. \$ \$ 2,500 00 \$ <		2,500	FT. 4 1/2		\$8.50			21,250.00			
Tubing 2.500 FT 2.38./FE @ \$3.75 /FT \$9.375.00 Floating Equipment 4 1/22 38" 7* x4 1/2" 5 2,500.00 7 Rods @ /FT \$ 2,500.00 7 7 Subsurfaces Equipment Sequences \$ 5,500.00 7 7 Subsurfaces Equipment Sequences \$ 5,500.00 7 7 Tanks, Treaters, Separators, Liners, Walks, ETC. # 7 \$ 5,208.00 7 Confingency 10 ⁺ . \$ 5,208.00 7 6 7 6 Other Miscellaneous Equipment (Fences, Culvert, Tools, ETC) \$ 1,500.00 7 6 7 6 7 6 7 6 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>/FT.</td> <td></td> <td></td> <td></td> <td></td> <td></td>						/FT.					
Wellhaad Equipment 4 1/2*2 3/8" 7" x 4 1/2" \$ 2,500 00 F Rods @ /FT \$ 2,500 00 F Subsificates Equipment, Centralizers, Scratchers @ /FT \$ 2,500 00 F Subsificates Equipment, Seating Nipple & Packer \$ 5,500 00 F F F F Subsificates Equipment, Seating Nipple & Packer \$ 5,500 00 F	Tubing	2,500	FT 2 3/8 JFE		\$3.75	/FT.	\$	9,375.00			
Floating Equipment, Certhalizers, Scratchers \$ 2,500.00 Ref Rods @ /FT. 5,500.00											
Rods @ /FT.								2,500.00			
Subsufaces Equipment: Seating Nipple & Packer \$ 5,500.00			are, eardiene		-	/FT.	1	2,000.00		-	
Dime Pipe 500 FT. @ \$2.00 /FT. \$1,000.00 FT @ //FT. \$1,000.00 //FT. \$		quinment.	Seating Ningle 8		1		\$	5 500 00			
Tank, Treaters, Separators, Liners, Walks, ETC, /FT. //FT. Gas Processing Unit. Dehydration 0 5 1500.00 0 Other Miscellaneous Equipment (Fences, Culvert, Tools, ETC) \$ 1500.00 0 0 Contingency 10 % \$ 5208.00 0 0 Total Equipment Cost \$ \$5208.00 0 0 0 0 Leases Total Well Cost \$ \$454,943.00 0					\$2.00	/FT				1	
Tanks, Treaters, Separators, Liners, Walks, ETC.	Line ripe	000			92.00		-	1,000.00			
Gas Processing Unit - Dehydration	Tanks Treate	rs Senarat			-	1. L.	-				
Other Miscellaneous Equipment (Fences, Culvert, Tools, ETC) \$ 1,500.00	Gas Processi	ng Unit - De	ahydration				-			1	
Contingency 10 % \$ 5,208.00				Subject Toole	ETC)		\$	1 500 00		1	
Total Equipment Cost \$ 57,293.00 Total Well Cost \$ 454,943.00 Dry Hole Completed Without Pipe Well Arizona State Land Department Cost Total Well and Lease Cost Image: Cost Aprovals Image: Cost Operator Image: Cost By Image: Cost With with state Image: Cost			%							1 1	
Total Well Cost \$454,943.00 Leases Dry Hole Without Pipe Completed Well Actual Cost (U Leases Arizona State Land Department (U Total Well and Lease Cost Actual (U Aprovals Operator S By With % S S	o o mingency	10	Total Equipmon	t Cost						-	
Leases Leases Vithout Pipe Vith			Total Well Cost	i ovat						1	
Leases Without Pipe Well Cost (L) Leases Arizona State Land Department I									Complete 1	Astrol	0.0
Total Well and Lease Cost Aprovals Operator	Leases						N				Over (Under)
Aprovals Operator	Leases	Arizona S					-				
Operator By W1 %	Aprovala										
By											
WI %							_			2	
	By									11	
Date										1	
	Date						_				


AFE No. Area:					-	Date:	7-Dec-15		
								10	
	MS 001 Section 1	3, Township 12 N	orth Range 24	Lease Nu East	mber:	Arizona State La	and Department	(ASLD) Apache	
state:	AZ	Project Name:				Operator:	PetroSun Inc //	AZ Energy	
ormation	Devonian	test							
Prepared By:	Gordon Le	Blanc, Jr.					T.D.	4,500 feet	
Exploration	Yes		Development		N/A				
xpioration	Tes		Development		N/A	_			
Results	Oil		Gas]	Dry			
	1			1	1	Dry Hole	Completed	Actual	Over
Drilling Intan	gibles:					Without Pipe	Well	Cost	(Under)
ocation: Roa	de Rite Da	magas				\$ 5,000.00			
Rig Move	ius, Pils Da	FL @		/FT.		\$60,000.00			
Day Work	17	Days WDP @	\$ 10,500.00	/Day		\$246,500.00			
	Days	WODP @		/Day					
Cement and C esting and C						\$18,250.00 \$31,000.00		-	
esting and C ogging	wing					\$ 29,900.00		1	
	Services (Le	gal, Engineering	, Geological, S	urvey)		\$34,000.00			
Aud Materials	s, Fuel, Wat	er				\$32,600.00			
lits, Corehea	ds and Ren	tals				\$ 36,700.00			
		Inc. Marine, Rigg				\$ 5,000.00			
		& Transportatio	n & Blowout Insi	urance)		\$11.900.00		-	
contingency dministrative		xpense				\$49,895.00		+ +	
	, seneral L	Total Drilling				\$ 548,845.00			
						0	0		~
ompletion I	Intancibles					Dry Hole Without Pipe	Completed Well	Actual Cost	Over (Under)
Completion U		4	Days/Hrs.	5,500.00		\$ 22,000.00	TTCI .	003	(onder)
Cement and C			a ayarma.	3,000.00		\$37,990.00			
Perforating an	nd Logging					\$17,500.00			
rac and/or A		ent				\$18,000.00			
uel, Water, F						\$ 3,000.00		1	
lattery Const						\$ 6,000.00			
Professions!	Services (1)	uipment - Rental	Geological C	onculting)		\$ 13,000.00 \$ 8,000.00		+	
		Inc. Marine, Wek				\$ 2,500.00		+ +	
		Fransportation	, outrill L			\$ 4,500.00			
Contingency	10	%				\$14,291.00			
		Total Complet				\$ 146,781.00			
		Total Intangib	les					-	
						Dry Hole	Completed	Actual	Over
rilling and (Completion	Tangibles	0		/FT.	Without Pipe	Well	Cost	(Under)
asing	705	FT. 8 5/8"	@ @	\$12.50	/FT.	\$ 8,812.50		+	
	4,500	FT. 5 1/2"	@	\$8.50	/FT.	\$ 38,250.00		1	
			@		/FT.	1.1			
ubing	4,500	FT. 2 7/8"	@	\$4.75	/FT.	\$ 21,375.00			
Vellhead Equ						\$ 2,500.00		+	
loating Equip tods		ralizers, Scratch			(ET	\$ 2,500.00			
	4,500	7/8" rods @ \$4		_	/FT.	\$ 5,000.00		+ +	
ubsurfacee F	500	FT.	a	\$2.00	/FT.	\$ 1,000.00		+ +	
ubsurfaces to ine Pipe		FT.	@		/FT.				
ine Pipe			Install Labor			\$ 60,000.00			
ine Pipe anks, Gun ba						\$ 40,000.00		-	
ine Pipe fanks, Gun ba Pumping Unit	- D320-256	-120 w/ power		COLUMN AND A					
ine Pipe anks, Gun ba Pumping Unit Other Miscella	- D320-256 aneous Equ		Culvert, Tools, I	ETC)		\$ 1,500.00			
ine Pipe anks, Gun ba Pumping Unit Other Miscella	- D320-256	-120 w/ power pment (Fences, %		ETC)		\$ 18,093.75			
ine Pipe anks, Gun ba Pumping Unit Other Miscella	- D320-256 aneous Equ	-120 w/ power	nt Cost	ETC)		\$ 18,093.75 \$ 199,031.25			
ine Pipe anks, Gun ba Pumping Unit Other Miscella	- D320-256 aneous Equ	120 w/ power pment (Fences, % Total Equipme	nt Cost	ETC)		\$ 18,093.75			
ine Pipe anks, Gun ba Pumping Unit Other Miscella Contingency	- D320-256 aneous Equ	120 w/ power pment (Fences, % Total Equipme	nt Cost	ETC)		\$ 18,093.75 \$ 199,031.25 \$894,657.25 Dry Hole	Completed	Actual	Over (Linder)
ine Pipe anks, Gun ba Pumping Unit Dther Miscella Contingency eases	- D320-256 aneous Equ 10	120 w/ power pment (Fences, % Total Equipme Total Well Cos	nt Cost It	ETC)		\$ 18,093.75 \$ 199,031.25 \$894,657.25	Completed Well	Actual Cost	Over (Under)
ine Pipe anks, Gun ba Pumping Unit Dther Miscella Contingency eases	- D320-256 aneous Equ 10	120 w/ power pment (Fences, % Total Equipme	ent Cost	ETC)		\$ 18,093.75 \$ 199,031.25 \$894,657.25 Dry Hole			
ine Pipe Tanks, Gun ba Pumping Unit Dther Miscella Contingency .eases .eases	- D320-256 aneous Equ 10	120 w/ power pment (Fences, % Total Equipme Total Well Cos	ent Cost	ETC)		\$ 18,093.75 \$ 199,031.25 \$894,657.25 Dry Hole			
ine Pipe Tanks, Gun ba Pumping Unit Dther Miscella Contingency .eases .eases	- D320-256 aneous Equ 10	120 w/ power pment (Fences, % Total Equipme Total Well Cos	ent Cost	ETC)		\$ 18,093.75 \$ 199,031.25 \$894,657.25 Dry Hole			
ine Pipe Tanks, Gun ba Pumping Unit Other Miscella Contingency Leases Leases Aprovals Deperator	- D320-256 aneous Equ 10	120 w/ power pment (Fences, % Total Equipme Total Well Cos	ent Cost	ETC)		\$ 18,093.75 \$ 199,031.25 \$894,657.25 Dry Hole			
Line Pipe Tanks, Gun ba Pumping Unit Dther Miscella Contingency Leases Leases Leases Aprovals Operator By	- D320-256 aneous Equ 10	120 w/ power pment (Fences, % Total Equipme Total Well Cos	ent Cost	ETC)		\$ 18,093.75 \$ 199,031.25 \$894,657.25 Dry Hole			
Subsurfaces E Line Pipe Fanks, Gun bz zumping Unit Dther Miscelle Contingency Leases eases Aprovals Operator Sy VI %	- D320-256 aneous Equ 10	120 w/ power pment (Fences, % Total Equipme Total Well Cos	ent Cost	ETC)		\$ 18,093.75 \$ 199,031.25 \$894,657.25 Dry Hole			

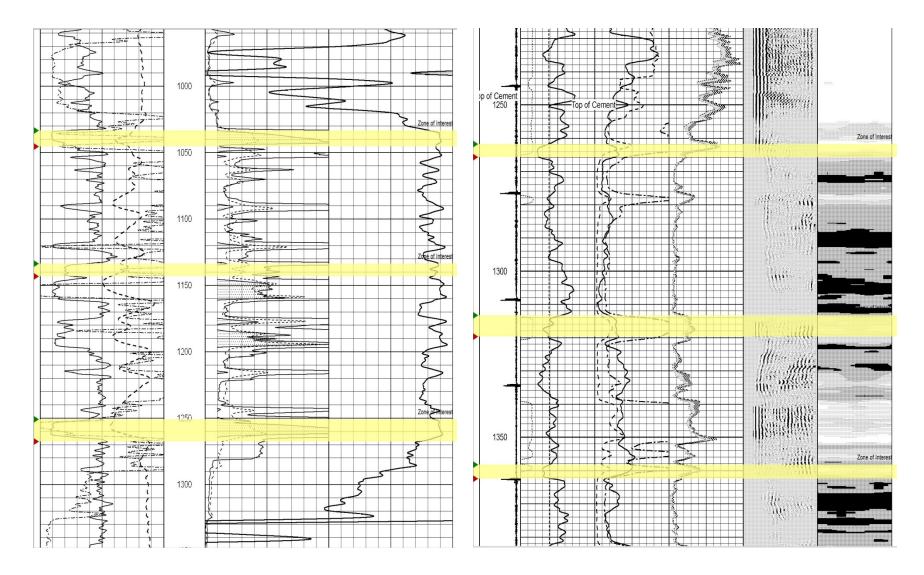
HNZ Holdings 17-1 Re-entry

- The NZOG 17-1 well that tested 9% helium content at 1583'-1619' in 2014 was renamed the HNZ Holdings 17-1.
- On December 9, 2016, AEP re-entered the NZOG 17-1 well with the intention to test six target zones for the potential production of commercial helium gas and hydrocarbons.
- Zone 1 1402'-1410';Zone 2 1352'-1362'; Zone 3 – 1312'-1318'; Zone 4 – 1262'-1267'; Zone 5 – 1102'-1108'; Zone 6 – 867'-885'
- Due to poor cement integrity and safety concerns, we were unable to test Zones 4, 5 & 6. Zone 3 was properly tested with minor stimulation and gas samples were sent to Wyoming Analytical Laboratories for analysis.
- On January 3, 2017, gas analysis report noted 7.05% helium content in Zone 3.


RCR 1 New Perforations and Re-entry

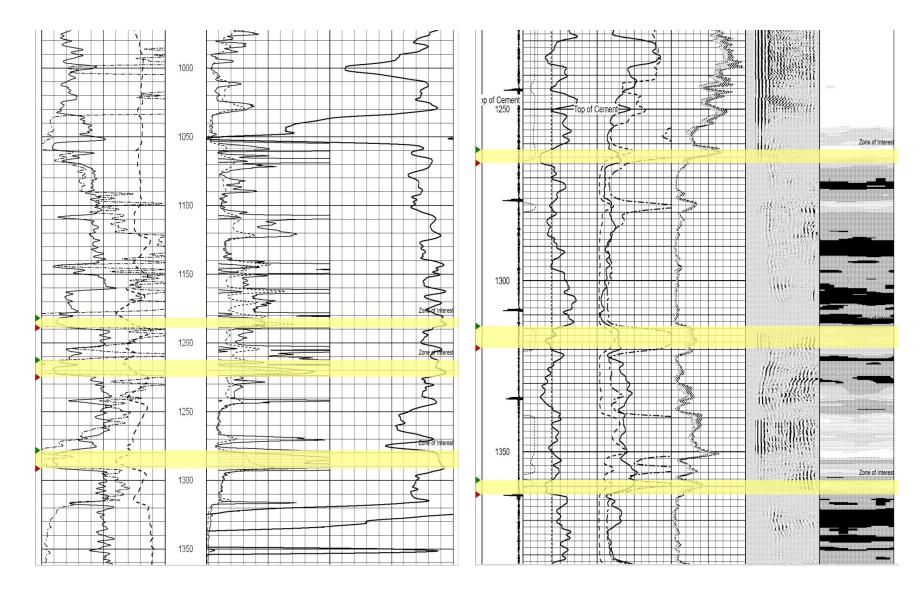
Rocking Chair Ranch #1 Workover & Flow Test

- Current perforations were designed to test Ft. Apache formation and dolomite stringers
- After conducting workover operations it is concluded that by pumping acid into stringers, and have a strong blow back, all that occurred is over pressuring zone by pumping. This conclusion was also noted on a deeper zone in the AEP 17-1 well.
- By looking for a more rounded shape on the gamma ray signature on the dual induction logs, (rounded shape sandstone), it is more conducive for producing gas because of its increased porosity.
- Please note that gas samples collected on the RCR #1 showed increased values of CO2, this is simply a byproduct of the chemical reaction between Hydrocloric Acid and Carbonate rocks (i.e. dolomite)
- A proposed workover for the RCR # 1 includes setting a drillable bridge plug at 1200' and perforating at 1160'-1170', then stimulate perforations with 2000 gallons of 15% HCL (acid).
- After stimulating immediately begin swabbing operations until all fluid is off of well. Then tie well into flow test meter run and test for 14 days, collect samples after 6 hours to flow throughput, then collect samples every 24 hours for duration of flow test.
- After 14 day test is concluded, set drillable bridge plug at 1120', and perforate from 1080'-1090'. Then stimulate perforations with 2000 gallons of 15% HCL (acid).
- After stimulating immediately begin swabbing operations until all fluid is off of well. Then tie well into flow test meter run and test for 14 days, collect samples after 6 hours to flow throughput, then collect samples every 24 hours for duration of flow test.
- After test, shut well in and wait for gas results from Wyoming Analytical lab, if helium content is suitable, use workover rig to drill out drillable plugs and begin gas production.


RCR 2 New Perforations and Re-entry

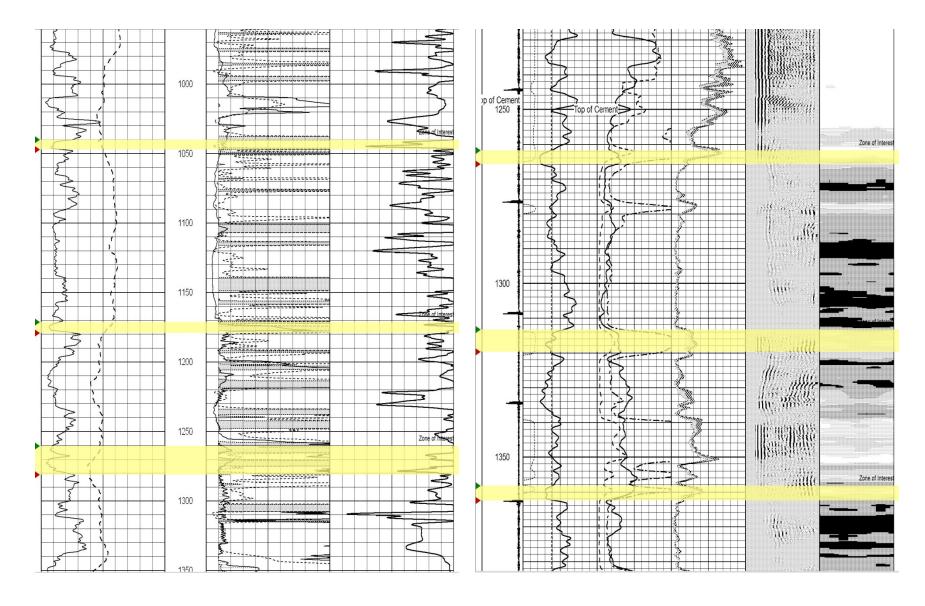
Rocking Chair Ranch #2 Workover and Flow Test

- Current perforations were designed to test Ft. Apache formation and dolomite stringers
- After conducting workover operations it is concluded that by pumping acid into stringers, and have a strong blow back, all that occurred is over pressuring zone by pumping. This conclusion was also noted on a deeper zone in the AEP 17-1 well.
- By looking for a more rounded shape on the gamma ray signature on the dual induction logs, (rounded shape= sandstone), it is more conducive for producing gas because of its increased porosity.
- Please note that gas samples collected on the RCR #2 showed increased values of CO2, this is simply a by-product of the chemical reaction between Hydrocloric Acid and Carbonate rocks (i.e. dolomite)
- A proposed workover for the RCR # 2 includes setting a drillable bridge plug at 1200' and perforating at 1160'-1182', then stimulate perforations with 2000 gallons of 15% HCL (acid).
- After stimulating immediately begin swabbing operations until all fluid is off of well. Then tie well into flow test meter run and test for 14 days, collect samples after 6 hours to flow throughput, then collect samples every 24 hours for duration of flow test.
- After 14 day test is concluded, set drillable bridge plug at 1105', and perforate from 1086'-1096'. Then stimulate perforations with 2000 gallons of 15% HCL (acid).
- After stimulating immediately begin swabbing operations until all fluid is off of well. Then tie well into flow test meter run and test for 14 days, collect samples after 6 hours to flow throughput, then collect samples every 24 hours for duration of flow test.
- After test, shut well in and wait for gas results from Wyoming Analytical lab, if helium content is suitable, use workover rig to drill out drillable plugs and begin gas production.


RCR 3 New Perforations and Re-entry

Rocking Chair Ranch #3 Workover & Flow Test

- Current perforations were designed to test Ft. Apache formation and dolomite stringers. After conducting workover operations it is concluded that by pumping acid into stringers, and have a strong blow back, all that occurred is over pressuring zone by pumping. This conclusion was also noted on a deeper zone in the AEP 17-1 well.
- By looking for a more rounded shape on the gamma ray signature on the dual induction logs, (rounded shape= sandstone), it is more conducive for producing gas because of its increased porosity.
- Please note that gas samples collected on the RCR #3 showed increased values of CO2, this is simply a byproduct of the chemical reaction between Hydrocloric Acid and Carbonate rocks (i.e. dolomite)
- A proposed workover for the RCR # 3 includes setting a drillable bridge plug at 1300' and perforating at 1250'-1268', then stimulate perforations with 2000 gallons of 15% HCL (acid).
- After stimulating immediately begin swabbing operations until all fluid is off of well. Then tie well into flow test meter run and test for 14 days, collect samples after 6 hours to flow throughput, then collect samples every 24 hours for duration of flow test.
- After 14 day test is concluded, set drillable bridge plug at 1200', and perforate from 1132'-1142'. Then stimulate perforations with 2000 gallons of 15% HCL (acid).
- After stimulating immediately begin swabbing operations until all fluid is off of well. Then tie well into flow test meter run and test for 14 days, collect samples after 6 hours to flow throughput, then collect samples every 24 hours for duration of flow test.
- After 14 day test is concluded, set drillable bridge plug at 1100', and perforate from 1032'-1045'. Then stimulate perforations with 2000 gallons of 15% HCL (acid).
- After stimulating immediately begin swabbing operations until all fluid is off of well. Then tie well into flow test meter run and test for 14 days, collect samples after 6 hours to flow throughput, then collect samples every 24 hours for duration of flow test.
- After test, shut well in and wait for gas results from Wyoming Analytical lab, if helium content is suitable, use workover rig to drill out drillable plugs and begin gas production.


RCR 4 New Perforations and Re-Entry

Rocking Chair Ranch #4 Workover & Flow test

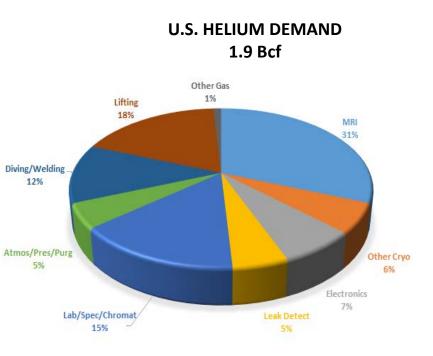
- Current perforations were designed to test Ft. Apache formation and dolomite stringers. After conducting workover operations it is concluded that by pumping acid into stringers, and have a strong blow back, all that occurred is over pressuring zone by pumping. This conclusion was also noted on a deeper zone in the AEP 17-1 well.
- By looking for a more rounded shape on the gamma ray signature on the dual induction logs, (rounded shape sandstone), it is more conducive for producing gas because of its increased porosity.
- Please note that gas samples collected on the RCR #4 showed increased values of CO2, this is simply a byproduct of the chemical reaction between Hydrocloric Acid and Carbonate rocks (i.e. dolomite)
- A proposed workover for the RCR # 4 includes setting a drillable bridge plug at 1300' and perforating at 1279'-1291', then stimulate perforations with 2000 gallons of 15% HCL (acid).
- After stimulating immediately begin swabbing operations until all fluid is off of well. Then tie well into flow test meter run and test for 14 days, collect samples after 6 hours to flow throughput, then collect samples every 24 hours for duration of flow test.
- After 14 day test is concluded, set drillable bridge plug at 1250', and perforate from 1212'-1222'. Then stimulate perforations with 2000 gallons of 15% HCL (acid).
- After stimulating immediately begin swabbing operations until all fluid is off of well. Then tie well into flow test meter run and test for 14 days, collect samples after 6 hours to flow throughput, then collect samples every 24 hours for duration of flow test.
- After 14 day test is concluded, set drillable bridge plug at 1200', and perforate from 1181'-1189'. Then stimulate perforations with 2000 gallons of 15% HCL (acid).
- After stimulating immediately begin swabbing operations until all fluid is off of well. Then tie well into flow test meter run and test for 14 days, collect samples after 6 hours to flow throughput, then collect samples every 24 hours for duration of flow test.
- After test, shut well in and wait for gas results from Wyoming Analytical lab, if helium content is suitable, use workover rig to drill out drillable plugs and begin gas production.

State of Arizona 4 New Perforations and Re-entry

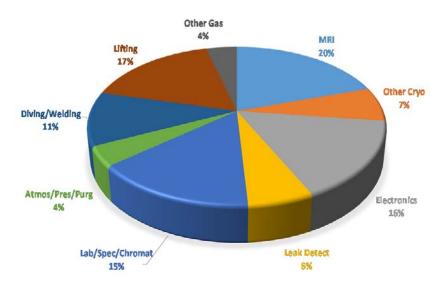
State of Arizona #4 Workover & Flow Test

- By looking for a more rounded shape on the gamma ray signature on the dual induction logs, (rounded shape= sandstone), it is more conducive for producing gas because of its increased porosity.
- Please note that gas samples were not collected. Testing the shallower zones may yield a significant helium find.
- A proposed workover for the State of Arizona #4 includes setting a drillable bridge plug at 1300' and perforating at 1260'-1280', then stimulate perforations with 2000 gallons of 15% HCL (acid).
- After stimulating immediately begin swabbing operations until all fluid is off of well. Then tie well into flow test meter run and test for 14 days, collect samples after 6 hours to flow throughput, then collect samples every 24 hours for duration of flow test.
- After 14 day test is concluded, set drillable bridge plug at 1200', and perforate from 1171'-1180'. Then stimulate perforations with 2000 gallons of 15% HCL (acid).
- After stimulating immediately begin swabbing operations until all fluid is off of well. Then tie well into flow test meter run and test for 14 days, collect samples after 6 hours to flow throughput, then collect samples every 24 hours for duration of flow test.
- After 14 day test is concluded, set drillable bridge plug at 1100', and perforate from 1040'-1048'. Then stimulate perforations with 2000 gallons of 15% HCL (acid).
- After stimulating immediately begin swabbing operations until all fluid is off of well. Then tie well into flow test meter run and test for 14 days, collect samples after 6 hours to flow throughput, then collect samples every 24 hours for duration of flow test.
- After test, shut well in and wait for gas results from Wyoming Analytical lab, if helium content is suitable, use workover rig to drill out drillable plugs and begin gas production.

Partnership between AEP and BECI


- Data should be combined between BECI & AEP to gain a better understanding of the Holbrook Basin.
- Using core data from BECI in conjunction with flow test/completion data from AEP, I firmly believe that AEP/BECI will soon find the most effective way to stimulate these reservoirs
- Also by combining seismic data from BECI, with aeroradiometric survey maps, we collectively will have every structure and fault identified to properly place wells in the basin.
- By using these data sets both AEP & BECI will be able to properly develop helium, gas and oil assets throughout the basin
- Also combining our operations, will help keep cost down, all for speedy development and a great partnership for gas processing
- These are all reasons we must work together on this basin.

Origin of Helium


 Terrestrial helium has two sources: (1) primordial helium that was incorporated in the Earth at the time of its formation and is now derived from sources deep within the Earth, (2) radioactive decay of uranium and thorium which are concentrated in the Earth's crust. Helium is composed of two isotopes: helium 4, which is produced by radioactive decay, and helium 3, which was created before the Earth formed and was incorporated into the Earth during its formation.

Helium Uses – Global & Domestic

2015 – Demand by Application

GLOBAL HELIUM DEMAND 6.0 Bcf

Helium Uses

Healthcare, High-tech Manufacturing & Scientific Research

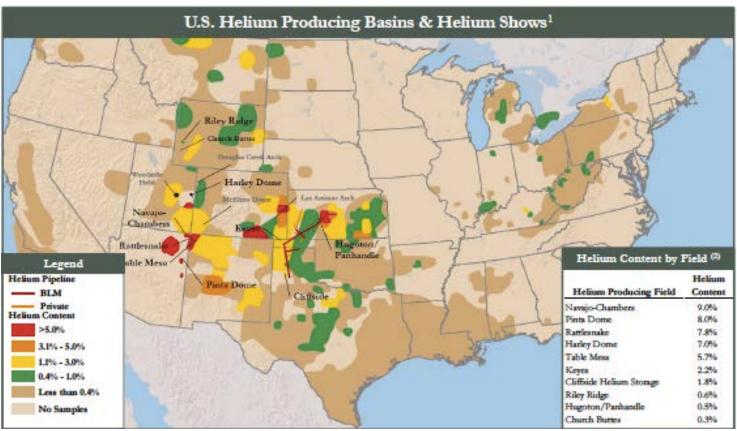
- Healthcare Industry
 - Consumption of helium was largest in healthcare industry in 2015.
 - Of the 2014 world helium production of about 180 million cubic meters of helium per year, the largest use (about 32% of the total) is in cryogenic applications, most of which involves cooling the superconducting magnets in medical MRI scanners and NMR spectrometers.
 - Helium is used in medical instrumentations, nuclear medicine, and breathing observation. It is essential in treating asthma, emphysema and other conditions that affect the lungs.

• Manufacturing & Science Research

- Helium is used in fiber optics and utilized to cool semiconductors that manufacture many digital devices.
- Liquid helium assists in cooling the superconducting equipment in particle accelerators.
- Super magnets and brain cell research. Labs all over the U.S. use liquid helium to cool instruments that will only work at super-low temperatures.

Helium Uses

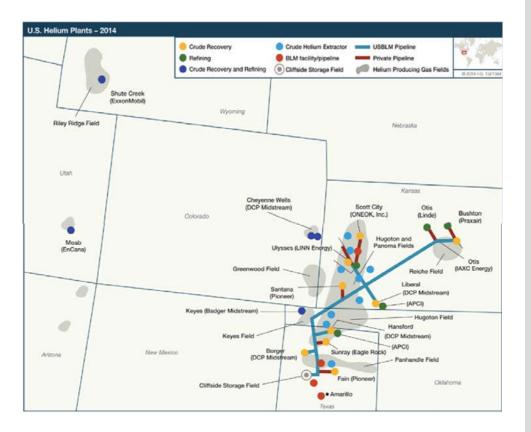
Industrial & Governmental


Industrial Uses

- Arc welding uses helium to create an inert gas shield. Similarly, divers and others working under pressure can use a mix of helium and oxygen to create a safe artificial breathing atmosphere.
- Various industries use helium to detect gas leaks before their products come to market
- Government US Defense & Space Programs
 - Cutting edge space science and research requires helium. NASA uses helium to keep hot gases and ultra-cold liquid fuel separated during lift off of rockets.
 - National defense applications include rocket engine testing, scientific balloons, surveillance craft, air-to-air missile guidance systems, and more.

Helium Accumulations

Mid-Continent and Beyond



(1) Sources: BLM, IACX

(2) Source: World Helium Resources and the Perspectives of Helium Industry Development, Yakutseni V.P., 2014

Existing US Helium Infrastructure

Significance of U.S. Bureau of Land Management (BLM)

FEDERAL HELIUM PROGRAM

- Historically, helium produced in the US was, in essence, sold to, and stockpiled by, the federal Government
- Helium produced as a byproduct of natural gas in the Hugoton stored in a reservoir north of Amarillo via a 400 mile pipeline running between Cliffside and Bushton
- Helium Privatization Act of 1996
- Currently six crude helium plants and six refineries along BLM pipeline
- Refineries liquefy helium sold by the BLM, as well as native gas produced by Hugoton Fields
- Pricing prior to 2015 determined solely based on formula established within HPA to recover govt's cost of capital for helium program
- Not a true representation of market value
- Auction format has recently been implemented for a portion of federal helium sold each year
- Very little price transparency; minimal value ultimately passed through to producers
- Capacity of market and low realized value has unsurprisingly have hindered helium development

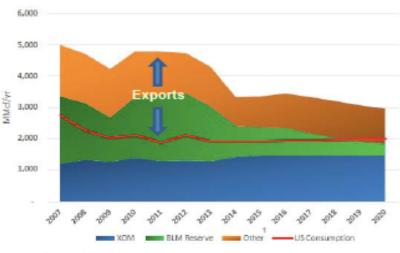
Helium Processing

Modular Liquid Helium Processing (MLHP) Unit

- The Modular Liquid Helium Processing (MLHP) Unit is a mobile modular gas processing plant which will process reservoir gas in the wellfield.
- The MLHP Unit is comprised of several components which are housed in ISO containers, mounted on trailers, and are interconnected at the gas production source. These small processing plants are a fraction of the cost of traditional helium processing plants, and have the advantage of being easily relocated when production stops in a gas field.
- Depending upon the geologic formation gas composition, the MLHP can be modified to produce natural gas (LNG), liquid CO2, in
 addition to commercial grade helium. Helium quality from the MLHP unit will be commercial grade (99.999%), and will normally be
 compressed for tube trailer loading. Liquid helium (LHe) can also be produced from the MLHP unit if required. Loading of LHe into
 cryogenic trailers, requires the production of liquid nitrogen (LN), which can also be performed by the MLHP unit.

*Detailed report on MLHP Unit can be provided upon request

US Helium Production


Historical and Projected

BLM is Declining

- In 2014, the U.S. Federal Helium Reserve provided roughly 1/6th (1 Bcf of a 6 Bcf market) of global helium supply and much of the global market's storage and supply flexibility. The Reserve is set to wind down by 2021.
 - o Critical supply source; provides some measure of price transparency
- Annual BLM helium sales have declined from >2.0 Bcf in 2012 to approximately 900 MMcf in 2015
- Significant new supplies domestically and abroad will be needed to offset BLM declines.

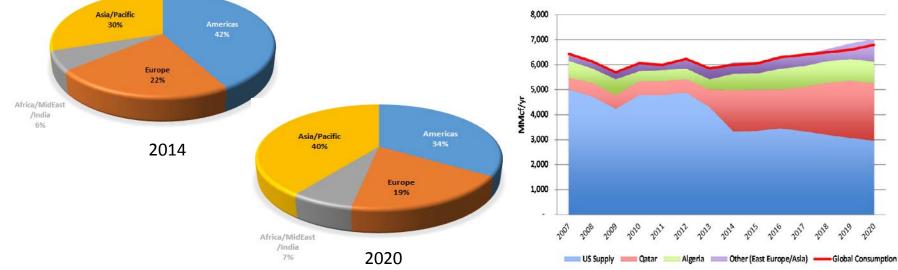
Aside from crude helium supplied by US BLM, helium has traditionally been supplied in the US from natural gas processing in the Mid-Continent, Rockies and Four Corners.

The Holbrook Basin Helium Project will help the U.S. market fill in the gap with a substantial source of helium production and a stable base of refined helium supply for years to come.

U.S. Supply/Demand Balance

Sources: BLM, JR Campbell & Assoc. (1) Note: "Other" includes supply from Doe Canyon, Riley Ridge, IACX Energy

Global Helium Demand Estimates


Shift to Asian Markets

Global Demand Increasing

- Between 2015 and 2020, annual worldwide demand is projected to increase from approximately 6.0 Bcf to just under 7.0 Bcf
- Both overall demand, and demand growth, expected to shift from the Americas and Europe to Asia
- Asian growth driven by increased access to healthcare (MRI), continued electronics demand (domestic demand and IT component exports), and general economic activity
- On the supply side, both Algeria, and, to a much larger degree, Qatar have filled the decline wedge left by US BLM, and have become critical to overall global supply stability

GLOBAL HELIUM DEMAND BY REGION

Helium Demand Trends

- By the end of the decade, international helium extraction facilities will become the main source of supply for world helium users. Seven international helium plants are in operation and more are planned during the next 3 to 5 years. Expansions to facilities have been completed in Algeria and Qatar.
- In 2015, demand for helium both domestically and worldwide increased. Additionally in 2015, a new helium recovery facility began operation in southwest Colorado. As a result, demand for helium stored in the U.S. Government's helium facilities has decreased by more than 50% during the past 2 years.
- Phase 2 of the Holbrook Basin Helium Project will involve the development and construction of a helium processing plant to bring regionally produced gas to market.

U.S. Consumption

Salient Statistics—United States:	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2015</u>
Helium extracted from natural gas ²	71	*73	*69	75	76
Withdrawn from storage ³	*59	*60	*49	*27	24
Grade-A helium sales	*130	133	*118	*102	100
Imports for consumption	_	_	2	7	10
Exports ⁴	82	85	81	67	67
Consumption, apparent ⁴	48	48	39	*42	43
Net import reliance ⁵ as a percentage					
of apparent consumption	E	E	E	E	E

- Statistics in million cubic meters
- Estimated 2015 domestic consumption of helium is 43 million cubic meters (1.5 billion cubic feet)

Helium Pricing

Gaseous Helium

- In fiscal year (FY) 2015, the price for crude helium to Government users was \$3.06 per cubic meter (\$85.00 per thousand cubic feet) and to non-Government users was \$3.75 per cubic meter (\$104.00 per thousand cubic feet).
- The estimated price for private industry's Grade-A helium was about \$7.21 per cubic meter (\$200 per thousand cubic feet), with some producers posting surcharges to this price.

Helium Pricing

Wellhead Content Projection & NZ 17-1 Test (2014)

		\$50.00	\$75.00	\$100.00	\$125.00	\$150.00	\$175.00	\$200.00
	2.0%	\$1.00	\$1.50	\$2.00	\$2.50	\$3.00	\$3.50	\$4.00
Content	3.0%	\$1.50	\$2.25	\$3.00	\$3.75	\$4.50	\$5.25	\$6.00
	4.0%	\$2.00	\$3.00	\$4.00	\$5.00	\$6.00	\$7.00	\$8.00
ad Helium	5.0%	\$2.50	\$3.75	\$5.00	\$6.25	\$7.50	\$8.75	\$10.00
ЧHе	6.0%	\$3.00	\$4.50	\$6.00	\$7.50	\$9.00	\$10.50	\$12.00
	7.0%	\$3.50	\$5.25	\$7.00	\$8.75	\$10.50	\$12.25	\$14.00
Wellhe	8.0%	\$4.00	\$6.00	\$8.00	\$10.00	\$12.00	\$14.00	\$16.00
	9.0%	\$4.50	\$6.75	\$9.00	\$11.25	\$13.50	\$15.75	\$18.00

Effective/Realized Helium Price (\$/Mcf)

*Chart illustrates helium value on a netback basis at various potential wellhead helium concentrations and realized helium prices.

*Chart does not take into account any capex, opex, processing fees, etc.

Ray Hobbs United Helium 2999 N 44th St, Suite 530 Phoenix, AZ 82018

Date: May 23, 2014 Request Number: 32832 Date Received: 5-19-14 Matrix: Gaseous

REPORT OF ANALYSIS

Lab Number	P1752		a constraint of the		
	NZ-17-1 013				1
Sample ID	4-14-14 1355	Units	Method	Date Analyzed	Analyst
Carbon Monoxide	< 0.1	Mole, %	TCD/FID	5/22/2014	KS
Carbon Dioxide	30.6	Mole, %	TCD/FID	5/22/2014	KS
Nitrogen	54.6	Mole, %	TCD/FID	5/22/2014	KS
Oxygen	1.9	Mole, %	TCD/FID	5/22/2014	KS
Methane	3.9	Mole, %	TCD/FID	5/22/2014	KS
Helium	9.0	Mole, %	TCD/FID	5/22/2014	KS

In May 2014, United Helium commissioned Wyoming Analytical Laboratories to conduct a gas analysis of the NZ 17-1 on the current leasehold. Tests identified a 9% helium show.

Gordan Leblanc Arizona Energy Partners 2999 N 44th St. Suite 620 Phoenix, AZ 85018 Date: January 3, 2016 Request Number: 35995 Date Received: 12/20/16 Matrix: Gas Analyzed: MLE 12/30/16

GAS ANALYSIS REPORT

					0/10 /1						/ • • • • • • • • • • • • • • • • • • •	ZOU. WILL	LI00, 10
Lab #	Sample ID												
R0463	001 12/15/16 1240	Helium	CO2	CO	02	N2	Methane	Ethane	Propane	Butane	Pentane	Hexane	Total
	Mole%	1.49	16.12	0.35	16.27	65.10	0.30	0.33	0.00	0.06	0.00	0.01	100.01
R0464	002 12/15/16 1240	Helium	CO2	CO	02	N2	Methane	Ethane	Propane	Butane	Pentane	Hexane	Total
	Mole%	2.38	20.75	0.18	15.93	59.62	0.51	0.35	0.00	0.09	0.36	0.01	100.20
R0465	003 12/16/16 0600	Helium	CO2	CO	02	N2	Methane	Ethane	Propane	Butane	Pentane	Hexane	Total
	Mole%	3.97	27.45	0.22	12.34	53.87	1.23	0.29	0.00	0.10	0.00	0.00	99.48
R0466	004 12/16/16 0600	Helium	CO2	CO	02	N2	Methane	Ethane	Propane	Butane	Pentane	Hexane	Total
	Mole%	7.05	25.22	0.20	11.91	53.61	1.99	0.03	0.00	0.00	0.00	0.00	100.00

Micromat III Atmospheric Gases Quality Control

	Result	Expected	% Rec.
CO2	4.994	5	99.88
со	4.6879	5	93.758
He	4.32	5	86.4
CH4	4.9194	5	98.388
N2	5.27	5	105.4
O2	5.2219	5	104.438

Scotty Combustible Gases

Quality Control									
	Result	Expected	% Rec.						
Methane	0.0113	0.01	113						
Ethane	0.0072	0.01	72						
Propane	0.0089	0.01	89						
Butane	0.009	0.01	90						
Pentane	0.0095	0.01	95						
Hexane	0.0089	0.01	89						

End of Report MLE/tab

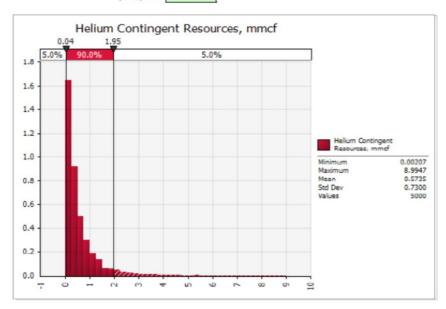
WYOMING ANALYTICAL LABORATORIES, INC

1660 Harrison Street Laramie, WY 82070 www.wal-lab.com laramie@wal-lab.com ph: 307-742-7995 fax: 307-721-8956

Laboratory Manager

Page 1 of 1

Monte Carlo Reservoir Model


MHA Petroleum Consultants on Behalf of AEP (2017) www.mhausa.com

Concho Dome helium contingent resources

area, ac =	4,000
gross thickness, ft =	45
helium fraction, % =	3.0%
porosity, % =	16%
water sat, % =	40%
gas fvf, rcf/scf =	0.12
recovery factor, % =	54%
helium OGIP, bcf =	0.188
helium contin res, bcf =	0.102

	parameters		distribution & paramaters
160	4,000	17,928	triangle - min, ml, max
2	45	137	triangle - min, ml, max
1.0%	3.0%	14.0%	triangle - min, ml, max
8%	16%	27%	triangle - min, ml, max
32%	40%	100%	triangle - min, ml, max
0.02	0.12	0.15	triangle - min, ml, max
30%	54%	90%	triangle - min, ml, max

19.9 p10/p90 =

ref/comments

Rauzi, 2003 & AEP_gas_samples.xlsx

Fasset, 1978, Dean, 1960

Fassett, 19778, Dean, 1960 Lee & Wattenbarger, 1996, NIST

min-Pinta D spac, ml-Pinta D, Nav Sps, max=M avg PD & NS-Fasset, 1978, Dean, 1960, Rauzi, 2

min-water influx, mI-PD & NS avg, max-volume

chance of atrisk, Con Res, exceeding % bcf 99% 1% 0.028 95% 5% 0.074 90% 10% 0.115 85% 15% 0.160 20% 80% 0.208 75% 25% 0.263 70% 30% 0.317 65% 35% 0.374 60% 40% 0.438 55% 45% 0.514 50% 50% 0.589 45% 55% 0.674 40% 60% 0.778 35% 65% 0.905 30% 70% 1.046 25% 75% 1.231 20% 80% 1.483 15% 85% 1.784 10% 90% 2.289 5% 95% 3.247

99%

6.092

1%

Monte Carlo Implications for Rocking Chair Ranch

			n	arameters		distribution	& paramaters	÷	re	ef/comments			
irea, ac=	16000		640	16000	71712	triangle- min, ml, max		min-Pinta D spac, ml-Pinta D,			State of the second state		
ross thickness, ft=	165		2	165	502	triangle- min, ml, max Avg PD & NS-Fasset, 1978, Dea							
nelium fraction, %=	3.00%		1.00%	3.00%	14%	triangle- min, ml, max Rauzi, 2003 & AEP_gas_samples							
porosity, %=	16%		8%								S.XISX		
vater sat, %=	40%		0.2										
ecovery factor, %=	40% 54%		30%	54%	90%	the second s	nin, ml, max			er, 1996, NIST	ст		
as fvf, rcf/scf=	0.12		30%	J4/0	9076	triangle- i	1111, 111, 111aX		-				
	0.752							min-wate	er innux, r	nl-PD & NS ave	, max-volum		
elium OCIP, bcf=	100000000000000000000000000000000000000												
elium contin res, bcf=	0.408				-10/-00-	10.0							
					p10/p90=	19.9							
		Con Res bcf											
99%	1%												
95%	5%	0.296			He	lium Contingent	Resources hof						
90%	10%	0.46			110	ium contingent	nesources, ser						
85%	15%	0.64	30										
80%	20%	0.832											
75%	25%	1.052	25										
70%	<mark>30%</mark>	1.268	1										
65%	35%	1.496	unitary difference of the second seco										
60%	40%	1.752									-		
55%	45%	2.056	15										
50%	50%	2.356	t ot										
45%	55%	2.696	<mark>م</mark> 10										
40%	60%	3.112											
35%	65%	3.62	5										
30%	70%	4.184											
25%	75%	4.924	0		1				•				
20%	80%	5.932	0%	2	.0%	40%	60% 80	% 1	.00%	120%			
15%	85%	7.136											
10%	90%	9.156			C	hance of exceedi	ng						
5%	95%	12.988											
570													

Please note this is a contingent model, until flow tests/production are recorded. This is a potential based on analogs (AEP 17-1 & Pinta Dome & Navajo Springs)

References

Dean, J. W., 1960, "Helium potential of the Navajo-Chambers area, Apache County, Arizona: Interstate Oil Compact Commission Committee Bulletin, December, v. 2, no. 2, p. 33-48.

Fassett, J. E., (ed.), 1978, "Oil and Gas Fields of the Four Corners Area", vol. 1, Four Corners Geological Society.

Lee, J., and Wattenbarger, R. A., 1996, "Gas Reservoir Engineering", SPE Textbook Series, v. 5, 1996.

Mazzullo, S. J. letter to Carmon Bonanno, Blackstone Exploration, "Evaluation of oil-gas-helium potential in part of Apache County, Arizona", dated September 10, 2016.

National Institute of Standards and Technology (NIST), 2016, http://webbook.nist.gov/chemistry/fluid/

Olukoga, Olufela, "Oil and Gas; and Helium Production Potential of Oil and Gas Assets in Navaho County, Arizone", June 6, 2016.

Rauzi, S. L., "Review of Helium Production and Potential in Arizona", Arizona Geological Survey Open –File Report OFR 03-05, October 2003

Rauzi, S. L., and Fellows, L. D., "Arizona Has Helium", Arizona Geology, v. 33, n. 4, Winter 2003, Arizona Geological Survey.

Spencer, J. E., "Helium Resources and Production in Arizona", Arizona Bureau of Geology and Mineral Technology Fieldnotes, v. 13, n. 2, p 6, Summer 1983.